zoukankan      html  css  js  c++  java
  • HDU 1695 GCD

    GCD

    Time Limit: 3000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 1695
    64-bit integer IO format: %I64d      Java class name: Main
     
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     

    Output

    For each test case, print the number of choices. Use the format in the example.
     

    Sample Input

    2
    1 3 1 5 1
    1 11014 1 14409 9

    Sample Output

    Case 1: 9
    Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

    Source

     
    解题:容斥 + 数论
     

    x是[1,b],y是[1,d],求GCD(x,y)=k的对数(x,y无序)

    对x,y都除以k,则求GCD(x,y)=1

    此时枚举x,问题转化为[1,d]区间内与x互素的数字个数,这个问题是hdu 4135

    有一个特殊的地方是x,y无序,对于这点只要保证x始终小于y就可以了

    特判k=0

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 int b,d,k;
     5 vector<LL>g;
     6 int main() {
     7     int kase,cs = 1;
     8     scanf("%d",&kase);
     9     while(kase--) {
    10         scanf("%*d%d%*d%d%d",&b,&d,&k);
    11         if(!k) {
    12             printf("Case %d: 0
    ",cs++);
    13             continue;
    14         }
    15         b /= k;
    16         d /= k;
    17         if(b > d) swap(b,d);
    18         LL ret = 0;
    19         for(int i = 1,tmp; i <= b; ++i) {
    20             g.clear();
    21             tmp = i;
    22             for(int j = 2; j*j <= tmp; ++j) {
    23                 if(tmp%j == 0) {
    24                     while(tmp%j == 0) tmp /= j;
    25                     for(int k = g.size()-1; k >= 0; --k)
    26                         if(abs(g[k]*j) <= d) g.push_back(-j*g[k]);
    27                     g.push_back(j);
    28                 }
    29             }
    30             if(tmp > 1) {
    31                 for(int k = g.size()-1; k >= 0; --k)
    32                     if(abs(g[k]*tmp) <= d) g.push_back(-tmp*g[k]);
    33                 g.push_back(tmp);
    34             }
    35             LL ans = 0;
    36             for(int j = g.size()-1; j >= 0; --j) ans += d/g[j] - (i-1)/g[j];
    37             ret += (d - i + 1) - ans;
    38         }
    39         printf("Case %d: %I64d
    ",cs++,ret);
    40     }
    41     return 0;
    42 }
    View Code
  • 相关阅读:
    C#动态显示时间
    死锁问题
    TCP_NODELAY算法使用事项
    二叉搜索树的后序遍历
    从上到下打印二叉树
    栈的压入、弹出序列
    包含min函数的栈
    顺时针打印矩阵
    树的子结构
    合并两个排序链表
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4802071.html
Copyright © 2011-2022 走看看