zoukankan      html  css  js  c++  java
  • LeetCode

    11. Container With Most Water 

    Problem's Link

     ----------------------------------------------------------------------------

    Mean: 

    给你一个N条垂直于x轴的直线,从中找两条直线和x轴组成一个桶状容器,使得这个容器的容量最大.

    analyse:

    1.O(n^2)的做法就不说了,妥妥的超时.

    for(int i=0;i<n;++i)
       for(int j=i+1;j<n;++j)
           ...

    2.后来在上面方法的基础上加了一些剪枝,但复杂度还是O(n^2),也超时.

    // Time Limit Exceeded
    class Solution
    {
    public:
       int maxArea(vector<int>& height)
       {
           if(height.size()<=1)
               return 0;
           vector<int> frontIdx;
           frontIdx.push_back(0);
           auto ret=0;
           for(auto i=1;i<height.size();++i)
           {
               for(auto idx:frontIdx)
               {
                   ret=max(ret,min(height[idx],height[i])*(i-idx));
               }
               auto endIdx=*frontIdx.rbegin();
               if(height[i]>height[endIdx])
                   frontIdx.push_back(height[i]);
           }
           return ret;
       }
    };

     3.后来看了discuss,看到这个做法,甚是巧妙.

    proof:

    The O(n) solution with proof by contradiction doesn't look intuitive enough to me. Before moving on, read the algorithm first if you don't know it yet.

    Here's another way to see what happens in a matrix representation:

    Draw a matrix where the row is the first line, and the column is the second line. For example, say n=6.

    In the figures below, x means we don't need to compute the volume for that case: (1) On the diagonal, the two lines are overlapped; (2) The lower left triangle area of the matrix is symmetric to the upper right area.

    We start by computing the volume at (1,6), denoted by o. Now if the left line is shorter than the right line, then all the elements left to (1,6) on the first row have smaller volume, so we don't need to compute those cases (crossed by ---).

      1 2 3 4 5 6
    1 x ------- o
    2 x x
    3 x x x 
    4 x x x x
    5 x x x x x
    6 x x x x x x

     Next we move the left line and compute (2,6). Now if the right line is shorter, all cases below(2,6) are eliminated.

      1 2 3 4 5 6
    1 x ------- o
    2 x x       o
    3 x x x     |
    4 x x x x   |
    5 x x x x x |
    6 x x x x x x

    And no matter how this o path goes, we end up only need to find the max value on this path, which contains n-1 cases.

      1 2 3 4 5 6
    1 x ------- o
    2 x x - o o o
    3 x x x o | |
    4 x x x x | |
    5 x x x x x |
    6 x x x x x x
    class Solution
    {
    public:
       int maxArea(vector<int>& height)
       {
           int si=height.size();
           int low=0,high=si-1;
           int ret=0;
           while(low<high)
           {
               ret=max(ret,min(height[low],height[high])*(high-low));
               if(height[low]<height[high])
                   ++low;
               else
                   --high;
           }
           return ret;
       }
    };

    Time complexity: O(N)

     

    view code

    /**
    * -----------------------------------------------------------------
    * Copyright (c) 2016 crazyacking.All rights reserved.
    * -----------------------------------------------------------------
    *       Author: crazyacking
    *       Date  : 2016-02-16-09.42
    */
    #include <queue>
    #include <cstdio>
    #include <set>
    #include <string>
    #include <stack>
    #include <cmath>
    #include <climits>
    #include <map>
    #include <cstdlib>
    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    typedef long long(LL);
    typedef unsigned long long(ULL);
    const double eps(1e-8);
    /*
    // Time Limit Exceeded
    class Solution
    {
    public:
       int maxArea(vector<int>& height)
       {
           if(height.size()<=1)
               return 0;
           vector<int> frontIdx;
           frontIdx.push_back(0);
           auto ret=0;
           for(auto i=1;i<height.size();++i)
           {
               for(auto idx:frontIdx)
               {
                   ret=max(ret,min(height[idx],height[i])*(i-idx));
               }
               auto endIdx=*frontIdx.rbegin();
               if(height[i]>height[endIdx])
                   frontIdx.push_back(height[i]);
           }
           return ret;
       }
    };
    */

    //for(int i=0;i<n;++i)
    //    for(int j=i+1;j<n;++j)
    //        ...

    class Solution
    {
    public:
       int maxArea(vector<int>& height)
       {
           int si=height.size();
           int low=0,high=si-1;
           int ret=0;
           while(low<high)
           {
               ret=max(ret,min(height[low],height[high])*(high-low));
               if(height[low]<height[high])
                   ++low;
               else
                   --high;
           }
           return ret;
       }
    };

    int main()
    {
       Solution solution;
       auto n=0;
       while(cin>>n)
       {
           vector<int> ve;
           for(int i=0; i<n; ++i)
           {
               int tmp;
               cin>>tmp;
               ve.push_back(tmp);
           }
           cout<<solution.maxArea(ve)<<endl;
       }
       return 0;
    }
  • 相关阅读:
    mysql函数基本使用
    django form 组件源码解析
    jwt
    python数据类型 ——bytes 和 bytearray
    汇编基础四 --函数调用与堆栈平衡
    汇编基础之三 -- 汇编指令
    汇编基础之二 -- 寄存器和内存堆栈
    汇编基础之一 -- 位运算和四则运算的实现
    存储过程中的设置语句含义
    (转载)SQL去除回车符,换行符,空格和水平制表符
  • 原文地址:https://www.cnblogs.com/crazyacking/p/5035667.html
Copyright © 2011-2022 走看看