zoukankan      html  css  js  c++  java
  • hdu 1787 GCD Again

    hdu 1787 GCD Again

    http://acm.hdu.edu.cn/showproblem.php?pid=1787

    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     

    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     

    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     

    Sample Input
    2 4 0
     

    Sample Output
    0 1

    利用欧拉函数:

    #include <iostream>   
    using namespace std;  
    #define N 100000001     
    int euler(int n)  
    {      
     int ans=1;      
     int i;      
     for(i=2;i*i<=n;i++)      
     {          
      if(n%i==0)          
      {              
       n/=i;              
       ans*=i-1;              
       while(n%i==0)              
       {                  
        n/=i;                  
        ans*=i;              
       }          
      }      
     }      
     if(n>1)          
      ans*=n-1;      
     return ans;  
    }  
    int main()  
    {      
     int n;      
     while(scanf("%d",&n),n)      
     {          
      printf("%d\n",n-1-euler(n));
     }
     return 0;
    }

  • 相关阅读:
    Android NDK pthreads详细使用
    Android 音视频深入 十七 FFmpeg 获取RTMP流保存为flv (附源码下载)
    Android事件分发机制
    Gradle之FTP文件下载
    JVM内存回收机制
    Git如何把本地代码推送到远程仓库
    Android 进程间通讯方式
    微信小程序之文件系统初探
    时间选择器组件之关于table走过的弯路
    腾讯地图JavaScript API GL实现文本标记的碰撞避让
  • 原文地址:https://www.cnblogs.com/crazyapple/p/2999436.html
Copyright © 2011-2022 走看看