zoukankan      html  css  js  c++  java
  • 求最远点对,输出距离

     1 #include<iostream>
     2 #include <math.h>
     3 #include <algorithm>
     4 #include<stdio.h>
     5 
     6 using namespace std;
     7 
     8 #define eps 1e-8
     9 #define zero(x) (((x)>0?(x):-(x))<eps)
    10 struct point{ double x, y; }p[100005], convex[100005];
    11 
    12 double xmult(point p1, point p2, point p0)
    13 {
    14     return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    15 }
    16 
    17 int dist2(point a, point b)
    18 {
    19     return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
    20 }
    21 
    22 point p1, p2;
    23 int graham_cp(const void* a, const void* b){
    24     double ret = xmult(*((point*)a), *((point*)b), p1);
    25     return zero(ret) ? (xmult(*((point*)a), *((point*)b), p2) > 0 ? 1 : -1) : (ret > 0 ? 1 : -1);
    26 }
    27 void _graham(int n, point* p, int& s, point* ch){
    28     int i, k = 0;
    29     for (p1 = p2 = p[0], i = 1; i<n; p2.x += p[i].x, p2.y += p[i].y, i++)
    30     if (p1.y - p[i].y>eps || (zero(p1.y - p[i].y) && p1.x > p[i].x))
    31         p1 = p[k = i];
    32     p2.x /= n, p2.y /= n;
    33     p[k] = p[0], p[0] = p1;
    34     qsort(p + 1, n - 1, sizeof(point), graham_cp);
    35     for (ch[0] = p[0], ch[1] = p[1], ch[2] = p[2], s = i = 3; i < n; ch[s++] = p[i++])
    36     for (; s>2 && xmult(ch[s - 2], p[i], ch[s - 1]) < -eps; s--);
    37 }
    38 
    39 int wipesame_cp(const void *a, const void *b)
    40 {
    41     if ((*(point *)a).y < (*(point *)b).y - eps) return -1;
    42     else if ((*(point *)a).y >(*(point *)b).y + eps) return 1;
    43     else if ((*(point *)a).x < (*(point *)b).x - eps) return -1;
    44     else if ((*(point *)a).x >(*(point *)b).x + eps) return 1;
    45     else return 0;
    46 }
    47 
    48 int _wipesame(point * p, int n)
    49 {
    50     int i, k;
    51     qsort(p, n, sizeof(point), wipesame_cp);
    52     for (k = i = 1; i < n; i++)
    53     if (wipesame_cp(p + i, p + i - 1) != 0) p[k++] = p[i];
    54     return k;
    55 }
    56 
    57 int graham(int n, point* p, point* convex, int maxsize = 1, int dir = 1){
    58     point* temp = new point[n];
    59     int s, i;
    60     n = _wipesame(p, n);
    61     _graham(n, p, s, temp);
    62     for (convex[0] = temp[0], n = 1, i = (dir ? 1 : (s - 1)); dir ? (i < s) : i; i += (dir ? 1 : -1))
    63     if (maxsize || !zero(xmult(temp[i - 1], temp[i], temp[(i + 1) % s])))
    64         convex[n++] = temp[i];
    65     delete[]temp;
    66     return n;
    67 }
    68 
    69 int rotating_calipers(point *ch, int n)
    70 {
    71     int q = 1, ans = 0;
    72     ch[n] = ch[0];
    73     for (int p = 0; p < n; p++)
    74     {
    75         while (xmult(ch[p + 1], ch[q + 1], ch[p]) > xmult(ch[p + 1], ch[q], ch[p]))
    76             q = (q + 1) % n;
    77         ans = max(ans, max(dist2(ch[p], ch[q]), dist2(ch[p + 1], ch[q + 1])));
    78     }
    79     return ans;
    80 }
    81 int main()
    82 {
    83     int n;
    84     cin >> n;
    85     for (int i = 0; i < n; i++)
    86     {
    87         scanf("%lf%lf", &p[i].x, &p[i].y);
    88     }
    89     int size = graham(n, p, convex, 1, 0);
    90     //cout << rotating_calipers(convex, size) << endl;
    91     printf("%.8lf
    ",sqrt(rotating_calipers(convex, size)));
    92     return 0;
    93 }
  • 相关阅读:
    上传文件
    vue 动态数据请求
    Layui——layerjs 用法汇总(持续更新)
    以插入排序为例子带你彻底理解算法中的时间复杂度和各种渐进符号
    flappy pig小游戏源码分析(4)——核心pig模块(未完待续)
    flappy pig小游戏源码分析(3)——解剖util
    flappy pig小游戏源码分析(2)——解剖option
    flappy pig小游戏源码分析(1)——主程序初探
    Express细节探究(1)——app.use(express.static)
    部分常用Express方法详解
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3422080.html
Copyright © 2011-2022 走看看