zoukankan      html  css  js  c++  java
  • 4.1 卷积神经网络

    1. 边缘检测

    2. Padding

      为了解决两个问题:

        1.输出缩小。卷积操作后图像由(n,n)变成了(n-f+1,n-f+1)

        2.丢失图像边缘的大部分信息

      在卷积操作前对图像边缘进行填充,填充p个像素点。则填充并进行卷积后图像尺寸为(n+2p-f+1, n+2p-f+1)

      选择填充size:valid卷积:不填充

            same卷积:填充并卷积后的图像尺寸和原图像尺寸一样,即n+2p-f+1=n

    3. 步长

      设 输入为n*n, 过滤器f*f, padding=p, 步长=s.  则输出为((n+2p-f)/s+1, (n+2p-f)/s+1).商不是整数时向下取整

    4. 池化层

    5. 超参数

      尽量不要自己设置超参数,应当查看别人文献中怎么样设置的

      随着层数加深,$n_{h},n_{w}$通常会减少,而信道数通常增加

      池化层没有参数,卷积层参数较少,大部分参数都在FC层

    卷积的优势:参数共享,稀疏连接

    卷积层的超参数:卷积核大小,步长

    池化层超参数:池化类型,核大小,步长

  • 相关阅读:
    正课day04
    正科day03
    正课day02
    正课day01
    预科day08
    Elasticsearch之-文档操作
    Elasticsearch之-映射管理
    Elasticsearch之-索引操作
    Elasticsearch之-倒排索引
    es安装官方,第三方插件
  • 原文地址:https://www.cnblogs.com/cs-zzc/p/11387843.html
Copyright © 2011-2022 走看看