zoukankan      html  css  js  c++  java
  • 设计模式复习-组合模式

    #pragma once
    #include "stdafx.h"
    #include<set>
    #include<string>
    #include<iostream>
    using namespace std;
    
    /*
    设计模式-组合模式(Composite)[用类建一棵树]
        将对象组合成树形结构以表示 部分-整体 的层次结构。组合模式使得用户对
    单个对象和组合对象的使用具有一致性。
    */
    
    class CComponent {//所有节点统一接口
    protected:
    	string m_strName;
    public:
    	CComponent(const string &strName) {
    		m_strName = strName;
    	}
    	virtual void Add(CComponent * const pc) = 0;
    	virtual void Remove(CComponent * const pc) = 0;
    	virtual void Display(const int & nDepth) = 0;
    };
    
    class CLeaf : public CComponent {
    public:
    	CLeaf(const string &strName) : CComponent(strName) {}
    	void Add(CComponent *const pc) {
    		cout << "Cannot add to a leaf" << endl;
    	}
    	void Remove(CComponent *const pc) {
    		cout << "Cannot remove from a leaf" << endl;
    	}
    	void Display(const int &nDepth) {
    		cout << "-" << nDepth << ":" << m_strName << endl;
    	}
    };
    
    class CCpmposite : public CComponent {
    private:
    	set<CComponent*>m_cChildren;
    public:
    	CCpmposite(const string &strName) : CComponent(strName) {
    		m_cChildren.clear();
    	}
    	void Add(CComponent * const pc) {
    		m_cChildren.insert(pc);
    	}
    	void Remove(CComponent * const pc) {
    		m_cChildren.erase(pc);
    		delete pc;
    	}
    	void Display(const int &nDepth) {
    		cout << "-" << nDepth << ":" << m_strName << endl;
    		for each(auto i in m_cChildren) {
    			i->Display(nDepth + 1);
    		}
    	}
    	~CCpmposite() {
    		for each(auto i in m_cChildren) {
    			delete i;
    		}
    	}
    };
    
    
    int main() {
    
    	CCpmposite *pRoot = new CCpmposite("root");
    	pRoot->Add(new CLeaf("Lead A"));
    	pRoot->Add(new CLeaf("Lead B"));
    
    	CCpmposite *pComp = new CCpmposite("Composite X");
    	pComp->Add(new CLeaf("Lead A"));
    	pComp->Add(new CLeaf("Lead B"));
    
    	pRoot->Add(pComp);
    
    	pRoot->Display(1);
    
    	delete pRoot;
    
    	getchar();
    	return 0;
    }

  • 相关阅读:
    回溯法---哈密顿回路(5)
    回溯法---n皇后问题(4)
    回溯法---n-着色问题(3)
    回溯法--算法框架(2)
    创建二叉树的所有深度上的节点链表
    笔试
    笔试 (2)
    LeetCode278-第一个错误的版本(二分查找)
    LeetCode46-全排列(递归)
    LeetCode258-各位相加(猜想公式)
  • 原文地址:https://www.cnblogs.com/csnd/p/12061911.html
Copyright © 2011-2022 走看看