A k-multiple free set is a set of integers where there is no pair of integers where one is equal to another integer multiplied by k. That is, there are no two integers x and y (x < y) from the set, such that y = x·k.
You're given a set of n distinct positive integers. Your task is to find the size of it's largest k-multiple free subset.
The first line of the input contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109). The next line contains a list of n distinct positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).
All the numbers in the lines are separated by single spaces.
On the only line of the output print the size of the largest k-multiple free subset of {a1, a2, ..., an}.
6 2
2 3 6 5 4 10
3
In the sample input one of the possible maximum 2-multiple free subsets is {4, 5, 6}.
数据需要用64位long long去存储。
先对原始数据排序,遍历数组,若某元素的k倍数存在,则要判断是保留该元素抑或他的k倍数,事实上,总是保留该元素,然后标记它的k倍数,之后不再检测。
在判断k倍数是否存在时,使用顺序查找会超时,使用二分查找即可。
AC Code:
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cstring> 5 6 using namespace std; 7 8 int n, k; 9 long long a[100005]; 10 bool tag[100005]; 11 12 int main() 13 { 14 while(scanf("%d %d", &n, &k) != EOF) 15 { 16 for(int i = 0; i < n; i++) scanf("%I64d", a + i); 17 memset(tag, false, sizeof(tag)); 18 sort(a, a + n); 19 int ans = n; 20 for(int i = 0; i < n; i++) 21 { 22 if(!tag[i]) 23 { 24 long long p = a[i] * k; 25 if(p > a[n-1]) continue; 26 int low = i + 1, high = n - 1, mid; 27 while(low <= high) 28 { 29 mid = (low + high) / 2; 30 if(a[mid] > p) high = mid - 1; 31 else if(a[mid] < p) low = mid + 1; 32 else 33 { 34 tag[mid] = true; 35 ans--; 36 break; 37 } 38 } 39 } 40 } 41 printf("%d\n", ans); 42 } 43 return 0; 44 }