Max Sum Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
设一数组sum,sum[i]含义:所有以a[i]为结尾的序列的序列和构成一个集合,此集合的最大值就是sum[i]
如1,2,3.所有以a[2]=3为结尾的序列的序列和集合是{6,5,3},因而sum[2]=6.
如1,2,3.所有以a[2]=3为结尾的序列的序列和集合是{6,5,3},因而sum[2]=6.
sum的状态转移方程:sum[i] = max{sum[i-1]+a[i], a[i]}
ans必定是sum[0···(k-1)]之一。由于要记录起始位置和结束位置,引入s数组记录获得sum的序列的起始元素的位置,而由sum的定义,sum[i]的结束位置是i不用另外记录。
ans必定是sum[0···(k-1)]之一。由于要记录起始位置和结束位置,引入s数组记录获得sum的序列的起始元素的位置,而由sum的定义,sum[i]的结束位置是i不用另外记录。
1 //Memory: 1420 KB Time: 0 MS 2 //Language: C++ Result: Accepted 3 #include <iostream> 4 #include <string> 5 #include <set> 6 #include <map> 7 #include <vector> 8 #include <stack> 9 #include <queue> 10 #include <cmath> 11 #include <cstdio> 12 #include <cstring> 13 #include <algorithm> 14 using namespace std; 15 #define LL long long 16 #define cti const int 17 #define ctll const long long 18 #define dg(i) cout << "*" << i << endl; 19 20 int a[100005], sum[100005], s[100005]; 21 22 int main() 23 { 24 int T, N; 25 int ca = 0, ans; 26 scanf("%d", &T); 27 while(ca < T) 28 { 29 scanf("%d", &N); 30 for(int i = 0; i < N; i++) 31 scanf("%d", &a[i]); 32 ans = 0; 33 sum[0] = a[0]; 34 s[0] = 0; 35 for(int i = 1; i < N; i++) 36 { 37 if(sum[i-1] >= 0) 38 { 39 sum[i] = sum[i-1] + a[i]; 40 s[i] = s[i-1]; 41 } 42 else 43 { 44 sum[i] = a[i]; 45 s[i] = i; 46 } 47 if(sum[ans] < sum[i]) ans = i; 48 } 49 printf("Case %d:\n%d %d %d\n", ++ca, sum[ans], s[ans] + 1, ans + 1); 50 if(ca != T) puts(""); 51 } 52 return 0; 53 }