本题我们可以把物品当作一个点,并且设立一个虚拟原点,然后加上一个限制是不能超过m个等级
因此枚举每个范围求一遍最短路就行,因为我们发现等级差距并不是很大,注意,酋长不一定是最大等级
#include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 110, INF = 0x3f3f3f3f; int n, m; int w[N][N], level[N]; int dist[N]; bool st[N]; int dijkstra(int down, int up) { memset(dist, 0x3f, sizeof dist); memset(st, 0, sizeof st); dist[0] = 0; for (int i = 1; i <= n + 1; i ++ ) { int t = -1; for (int j = 0; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; st[t] = true; for (int j = 1; j <= n; j ++ ) if (level[j] >= down && level[j] <= up) dist[j] = min(dist[j], dist[t] + w[t][j]); } return dist[1]; } int main() { cin >> m >> n; memset(w, 0x3f, sizeof w); for (int i = 1; i <= n; i ++ ) w[i][i] = 0; for (int i = 1; i <= n; i ++ ) { int price, cnt; cin >> price >> level[i] >> cnt; w[0][i] = min(price, w[0][i]); while (cnt -- ) { int id, cost; cin >> id >> cost; w[id][i] = min(w[id][i], cost); } } int res = INF; for (int i = level[1] - m; i <= level[1]; i ++ ) res = min(res, dijkstra(i, i + m)); cout << res << endl; return 0; }