zoukankan      html  css  js  c++  java
  • PAT 1104 Sum of Number Segments

    1104 Sum of Number Segments (20 分)
     

    Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).

    Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 1. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

    Output Specification:

    For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

    Sample Input:

    4
    0.1 0.2 0.3 0.4
    

    Sample Output:

    5.00

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    
    int main(){
        int n;cin >> n;
        double sum = 0.0;
        for(int i=1;i <= n;i++){
            double x;cin >> x;
    
            sum+=i*(n+1-i)*x;
        }
        printf("%.2f",sum);
    
        return 0;
    }

    x放右面就过不了几个点,x放左边就能过了

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    
    int main(){
        int n;cin >> n;
        double sum = 0.0;
        for(int i=1;i <= n;i++){
            double x;cin >> x;
    
            sum+=x*i*(n+1-i);
        }
        printf("%.2f",sum);
    
        return 0;
    }

    对拍了半小时也没啥不同,这个bug先欠着,以后记着把double放左边先乘

     
  • 相关阅读:
    「模板」 树套树
    [Luogu 3701] 「伪模板」主席树
    「模板」 可持久化平衡树
    「模板」 割点
    [Luogu 2596] ZJOI2006 书架
    省选有感。(不是游记)
    [Luogu 2604] ZJOI2010 网络扩容
    MySql聚簇索引与非聚簇索引的区别
    四层负载均衡和七层负载均衡的区别
    Redis利用Pipeline加速查询速度的方法
  • 原文地址:https://www.cnblogs.com/cunyusup/p/10799587.html
Copyright © 2011-2022 走看看