zoukankan      html  css  js  c++  java
  • S3C2440上LCD驱动(FrameBuffer)实例开发讲解(二)

    S3C2440上LCD驱动(FrameBuffer)实例开发讲解(二)
    开发环境
    • 主  机:VMWare--Fedora 9
    • 开发板:Mini2440--64MB Nand, Kernel:2.6.30.4
    • 编译器:arm-linux-gcc-4.3.2

    上接:S3C2440上LCD驱动(FrameBuffer)实例开发详解(一)

    四、帧缓冲(FrameBuffer)设备驱动实例代码:

    ①、建立驱动文件:my2440_lcd.c,依就是驱动程序的最基本结构:FrameBuffer驱动的初始化和卸载部分及其他,如下:

    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/errno.h>
    #include <linux/init.h>
    #include <linux/platform_device.h>
    #include <linux/dma-mapping.h>
    #include <linux/fb.h>
    #include <linux/clk.h>
    #include <linux/interrupt.h>
    #include <linux/mm.h>

    #include <linux/slab.h>
    #include <linux/delay.h>
    #include <asm/irq.h>
    #include <asm/io.h>
    #include <asm/div64.h>
    #include <mach/regs-lcd.h>
    #include <mach/regs-gpio.h>
    #include <mach/fb.h>
    #include <linux/pm.h>


    /*FrameBuffer设备名称*/
    static char driver_name[] = "my2440_lcd";

    /*定义一个结构体用来维护驱动程序中各函数中用到的变量
      先别看结构体要定义这些成员,到各函数使用的地方就明白了*/

    struct my2440fb_var
    {
        int lcd_irq_no;           /*保存LCD中断号*/
        struct clk *lcd_clock;    /*保存从平台时钟队列中获取的LCD时钟*/
        struct resource *lcd_mem; /*LCD的IO空间*/
        void __iomem *lcd_base;   /*LCD的IO空间映射到虚拟地址*/
        struct device *dev;

        struct s3c2410fb_hw regs; /*表示5个LCD配置寄存器,s3c2410fb_hw定义在mach-s3c2410/include/mach/fb.h中*/

       
    /*定义一个数组来充当调色板。
        据数据手册描述,TFT屏色位模式为8BPP时,调色板(颜色表)的长度为256,调色板起始地址为0x4D000400*/

        u32    palette_buffer[256]; 

        u32 pseudo_pal[16];   
        unsigned int palette_ready; /*标识调色板是否准备好了*/
    };

    /*用做清空调色板(颜色表)*/
    #define PALETTE_BUFF_CLEAR (0x80000000)    

    /*LCD平台驱动结构体,平台驱动结构体定义在platform_device.h中,该结构体成员接口函数在第②步中实现*/
    static struct platform_driver lcd_fb_driver =
    {
        .probe     = lcd_fb_probe,               /*FrameBuffer设备探测*/
        .remove    = __devexit_p(lcd_fb_remove), /*FrameBuffer设备移除*/
        .suspend   = lcd_fb_suspend,             /*FrameBuffer设备挂起*/
        .resume    = lcd_fb_resume,              /*FrameBuffer设备恢复*/
        .driver    =
        {
            /*注意这里的名称一定要和系统中定义平台设备的地方一致,这样才能把平台设备与该平台设备的驱动关联起来*/
            .name = "s3c2410-lcd",
            .owner = THIS_MODULE,
        },
    };

    static int __init lcd_init(void)
    {
        /*在Linux中,帧缓冲设备被看做是平台设备,所以这里注册平台设备*/
        return platform_driver_register(&lcd_fb_driver);
    }

    static void __exit lcd_exit(void)
    {
        /*注销平台设备*/
        platform_driver_unregister(&lcd_fb_driver);
    }

    module_init(lcd_init);
    module_exit(lcd_exit);

    MODULE_LICENSE("GPL");
    MODULE_AUTHOR("Huang Gang");
    MODULE_DESCRIPTION("My2440 LCD FrameBuffer Driver");


    ②、LCD平台设备各接口函数的实现:

    /*LCD FrameBuffer设备探测的实现,注意这里使用一个__devinit宏,到lcd_fb_remove接口函数实现的地方讲解*/
    static int __devinit lcd_fb_probe(struct platform_device *pdev)
    {
        int i;
        int ret;
        struct resource *res;  /*用来保存从LCD平台设备中获取的LCD资源*/
        struct fb_info  *fbinfo; /*FrameBuffer驱动所对应的fb_info结构体*/
        struct s3c2410fb_mach_info *mach_info; /*保存从内核中获取的平台设备数据*/
        struct my2440fb_var *fbvar; /*上面定义的驱动程序全局变量结构体*/
        struct s3c2410fb_display *display; /*LCD屏的配置信息结构体,该结构体定义在mach-s3c2410/include/mach/fb.h中*/

       
    /*获取LCD硬件相关信息数据,在前面讲过内核使用s3c24xx_fb_set_platdata函数将LCD的硬件相关信息保存到
         了LCD平台数据中,所以这里我们就从平台数据中取出来在驱动中使用*/

        mach_info = pdev->dev.platform_data;
        if(mach_info == NULL)
        {
            /*判断获取数据是否成功*/
            dev_err(&pdev->dev, "no platform data for lcd\n");
            return -EINVAL;
        }

        /*获得在内核中定义的FrameBuffer平台设备的LCD配置信息结构体数据*/
        display = mach_info->displays + mach_info->default_display;

        /*给fb_info分配空间,大小为my2440fb_var结构的内存,framebuffer_alloc定义在fb.h中在fbsysfs.c中实现*/
        fbinfo = framebuffer_alloc(sizeof(struct my2440fb_var), &pdev->dev);
        if(!fbinfo)
        {
            dev_err(&pdev->dev, "framebuffer alloc of registers failed\n");
            ret = -ENOMEM;
            goto err_noirq;
        }
        platform_set_drvdata(pdev, fbinfo);/*重新将LCD平台设备数据设置为fbinfo,好在后面的一些函数中来使用*/

       
    /*这里的用途其实就是将fb_info的成员par(注意是一个void类型的指针)指向这里的私有变量结构体fbvar,
         目的是到其他接口函数中再取出fb_info的成员par,从而能继续使用这里的私有变量*/

        fbvar = fbinfo->par;
        fbvar->dev = &pdev->dev;

        /*在系统定义的LCD平台设备资源中获取LCD中断号,platform_get_irq定义在platform_device.h中*/
        fbvar->lcd_irq_no = platform_get_irq(pdev, 0);
        if(fbvar->lcd_irq_no < 0)
        {
            /*判断获取中断号是否成功*/
            dev_err(&pdev->dev, "no lcd irq for platform\n");
            return -ENOENT;
        }

        /*获取LCD平台设备所使用的IO端口资源,注意这个IORESOURCE_MEM标志和LCD平台设备定义中的一致*/
        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
        if(res == NULL)
        {
            /*判断获取资源是否成功*/
            dev_err(&pdev->dev, "failed to get memory region resource\n");
            return -ENOENT;
        }

        /*申请LCD IO端口所占用的IO空间(注意理解IO空间和内存空间的区别),request_mem_region定义在ioport.h中*/
        fbvar->lcd_mem = request_mem_region(res->start, res->end - res->start + 1, pdev->name);
        if(fbvar->lcd_mem == NULL)
        {
            /*判断申请IO空间是否成功*/
            dev_err(&pdev->dev, "failed to reserve memory region\n");
            return -ENOENT;
        }

       
    /*将LCD的IO端口占用的这段IO空间映射到内存的虚拟地址,ioremap定义在io.h中
         注意:IO空间要映射后才能使用,以后对虚拟地址的操作就是对IO空间的操作*/

        fbvar->lcd_base = ioremap(res->start, res->end - res->start + 1);
        if(fbvar->lcd_base == NULL)
        {
            /*判断映射虚拟地址是否成功*/
            dev_err(&pdev->dev, "ioremap() of registers failed\n");
            ret = -EINVAL;
            goto err_nomem;
        }

       
    /*从平台时钟队列中获取LCD的时钟,这里为什么要取得这个时钟,从LCD屏的时序图上看,各种控制信号的延迟
         都跟LCD的时钟有关。系统的一些时钟定义在arch/arm/plat-s3c24xx/s3c2410-clock.c中*/

        fbvar->lcd_clock = clk_get(NULL, "lcd");
        if(!fbvar->lcd_clock)
        {
            /*判断获取时钟是否成功*/
            dev_err(&pdev->dev, "failed to find lcd clock source\n");
            ret = -ENOENT;
            goto err_nomap;
        }
        /*时钟获取后要使能后才可以使用,clk_enable定义在arch/arm/plat-s3c/clock.c中*/
        clk_enable(fbvar->lcd_clock);

       
    /*申请LCD中断服务,上面获取的中断号lcd_fb_irq,使用快速中断方式:IRQF_DISABLED
         中断服务程序为:lcd_fb_irq,将LCD平台设备pdev做参数传递过去了*/

        ret = request_irq(fbvar->lcd_irq_no, lcd_fb_irq, IRQF_DISABLED, pdev->name, fbvar);
        if(ret)
        {
            /*判断申请中断服务是否成功*/
            dev_err(&pdev->dev, "IRQ%d error %d\n", fbvar->lcd_irq_no, ret);
            ret = -EBUSY;
            goto err_noclk;
        }

        /*好了,以上是对要使用的资源进行了获取和设置。下面就开始初始化填充fb_info结构体*/

        /*首先初始化fb_info中代表LCD固定参数的结构体fb_fix_screeninfo*/
       
    /*像素值与显示内存的映射关系有5种,定义在fb.h中。现在采用FB_TYPE_PACKED_PIXELS方式,在该方式下,
        像素值与内存直接对应,比如在显示内存某单元写入一个"1"时,该单元对应的像素值也将是"1",这使得应用层
        把显示内存映射到用户空间变得非常方便。Linux中当LCD为TFT屏时,显示驱动管理显示内存就是基于这种方式*/

        strcpy(fbinfo->fix.id, driver_name);/*字符串形式的标识符*/
        fbinfo->fix.type = FB_TYPE_PACKED_PIXELS;
        fbinfo->fix.type_aux = 0;/*以下这些根据fb_fix_screeninfo定义中的描述,当没有硬件是都设为0*/
        fbinfo->fix.xpanstep = 0;
        fbinfo->fix.ypanstep = 0;
        fbinfo->fix.ywrapstep= 0;
        fbinfo->fix.accel = FB_ACCEL_NONE;

        /*接着,再初始化fb_info中代表LCD可变参数的结构体fb_var_screeninfo*/
        fbinfo->var.nonstd          = 0;
        fbinfo->var.activate        = FB_ACTIVATE_NOW;
        fbinfo->var.accel_flags     = 0;
        fbinfo->var.vmode           = FB_VMODE_NONINTERLACED;
        fbinfo->var.xres            = display->xres;
        fbinfo->var.yres            = display->yres;
        fbinfo->var.bits_per_pixel  = display->bpp;

        /*指定对底层硬件操作的函数指针, 因内容较多故其定义在第③步中再讲*/
        fbinfo->fbops               = &my2440fb_ops;

        fbinfo->flags               = FBINFO_FLAG_DEFAULT;

        fbinfo->pseudo_palette      = &fbvar->pseudo_pal;

     

        /*初始化色调色板(颜色表)为空*/
        for(i = 0; i < 256; i++)
        {
            fbvar->palette_buffer[i] = PALETTE_BUFF_CLEAR;
        }


        for (i = 0; i < mach_info->num_displays; i++) /*fb缓存的长度*/
        {
            /*计算FrameBuffer缓存的最大大小,这里右移3位(即除以8)是因为色位模式BPP是以位为单位*/
            unsigned long smem_len = (mach_info->displays[i].xres * mach_info->displays[i].yres * mach_info->displays[i].bpp) >> 3;

            if(fbinfo->fix.smem_len < smem_len)
            {
                fbinfo->fix.smem_len = smem_len;
            }
        }

        /*初始化LCD控制器之前要延迟一段时间*/
        msleep(1);

        /*初始化完fb_info后,开始对LCD各寄存器进行初始化,其定义在后面讲到*/
        my2440fb_init_registers(fbinfo);

        /*初始化完寄存器后,开始检查fb_info中的可变参数,其定义在后面讲到*/
        my2440fb_check_var(fbinfo);
        
        /*申请帧缓冲设备fb_info的显示缓冲区空间,其定义在后面讲到*/
        ret = my2440fb_map_video_memory(fbinfo);
        if (ret)
        {
            dev_err(&pdev->dev, "failed to allocate video RAM: %d\n", ret);
            ret = -ENOMEM;
            goto err_nofb;
        }

        /*最后,注册这个帧缓冲设备fb_info到系统中, register_framebuffer定义在fb.h中在fbmem.c中实现*/
        ret = register_framebuffer(fbinfo);
        if (ret < 0)
        {
            dev_err(&pdev->dev, "failed to register framebuffer device: %d\n", ret);
            goto err_video_nomem;
        }

       
    /*对设备文件系统的支持(对设备文件系统的理解请参阅:嵌入式Linux之我行——设备文件系统剖析与使用)
         创建frambuffer设备文件,device_create_file定义在linux/device.h中*/

        ret = device_create_file(&pdev->dev, &dev_attr_debug);
        if (ret)
        {
            dev_err(&pdev->dev, "failed to add debug attribute\n");
        }

        return 0;

    /*以下是上面错误处理的跳转点*/
    err_nomem:
        release_resource(fbvar->lcd_mem);
        kfree(fbvar->lcd_mem);

    err_nomap:
        iounmap(fbvar->lcd_base);

    err_noclk:
        clk_disable(fbvar->lcd_clock);
        clk_put(fbvar->lcd_clock);

    err_noirq:
        free_irq(fbvar->lcd_irq_no, fbvar);

    err_nofb:
        platform_set_drvdata(pdev, NULL);
        framebuffer_release(fbinfo);

    err_video_nomem:
        my2440fb_unmap_video_memory(fbinfo);

        return ret;
    }

    /*LCD中断服务程序*/
    static irqreturn_t lcd_fb_irq(int irq, void *dev_id)
    {
        struct my2440fb_var    *fbvar = dev_id;
        void __iomem *lcd_irq_base;
        unsigned long lcdirq;

        /*LCD中断挂起寄存器基地址*/
        lcd_irq_base = fbvar->lcd_base + S3C2410_LCDINTBASE;

        /*读取LCD中断挂起寄存器的值*/
        lcdirq = readl(lcd_irq_base + S3C24XX_LCDINTPND);

        /*判断是否为中断挂起状态*/
        if(lcdirq & S3C2410_LCDINT_FRSYNC)
        {
            /*填充调色板*/
            if (fbvar->palette_ready)
            {
                my2440fb_write_palette(fbvar);
            }

            /*设置帧已插入中断请求*/
            writel(S3C2410_LCDINT_FRSYNC, lcd_irq_base + S3C24XX_LCDINTPND);
            writel(S3C2410_LCDINT_FRSYNC, lcd_irq_base + S3C24XX_LCDSRCPND);
        }

        return IRQ_HANDLED;
    }

    /*填充调色板*/
    static void my2440fb_write_palette(struct my2440fb_var *fbvar)
    {
        unsigned int i;
        void __iomem *regs = fbvar->lcd_base;

        fbvar->palette_ready = 0;

        for (i = 0; i < 256; i++)
        {
            unsigned long ent = fbvar->palette_buffer[i];

            if (ent == PALETTE_BUFF_CLEAR)
            {
                continue;
            }

            writel(ent, regs + S3C2410_TFTPAL(i));

            if (readw(regs + S3C2410_TFTPAL(i)) == ent)
            {
                fbvar->palette_buffer[i] = PALETTE_BUFF_CLEAR;
            }
            else
            {
                fbvar->palette_ready = 1;
            }
        }
    }

    /*LCD各寄存器进行初始化*/
    static int my2440fb_init_registers(struct fb_info *fbinfo)
    {
        unsigned long flags;
        void __iomem *tpal;
        void __iomem *lpcsel;

        /*从lcd_fb_probe探测函数设置的私有变量结构体中再获得LCD相关信息的数据*/
        struct my2440fb_var    *fbvar = fbinfo->par;
        struct s3c2410fb_mach_info *mach_info = fbvar->dev->platform_data;

       
    /*获得临时调色板寄存器基地址,S3C2410_TPAL宏定义在mach-s3c2410/include/mach/regs-lcd.h中。
        注意对于lpcsel这是一个针对三星TFT屏的一个专用寄存器,如果用的不是三星的TFT屏应该不用管它。*/

        tpal = fbvar->lcd_base + S3C2410_TPAL;
        lpcsel = fbvar->lcd_base + S3C2410_LPCSEL;

        /*在修改下面寄存器值之前先屏蔽中断,将中断状态保存到flags中*/
        local_irq_save(flags);

        /*这里就是在上一篇章中讲到的把IO端口C和D配置成LCD模式*/
        modify_gpio(S3C2410_GPCUP, mach_info->gpcup, mach_info->gpcup_mask);
        modify_gpio(S3C2410_GPCCON, mach_info->gpccon, mach_info->gpccon_mask);
        modify_gpio(S3C2410_GPDUP, mach_info->gpdup, mach_info->gpdup_mask);
        modify_gpio(S3C2410_GPDCON, mach_info->gpdcon, mach_info->gpdcon_mask);

        /*恢复被屏蔽的中断*/
        local_irq_restore(flags);

        writel(0x00, tpal);/*临时调色板寄存器使能禁止*/
        writel(mach_info->lpcsel, lpcsel);/*在上一篇中讲到过,它是三星TFT屏的一个寄存器,这里可以不管*/

        return 0;
    }

    /*该函数实现修改GPIO端口的值,注意第三个参数mask的作用是将要设置的寄存器值先清零*/
    static inline void modify_gpio(void __iomem *reg, unsigned long set, unsigned long mask)
    {
        unsigned long tmp;

        tmp = readl(reg) & ~mask;
        writel(tmp | set, reg);
    }

    /*检查fb_info中的可变参数*/
    static int my2440fb_check_var(struct fb_info *fbinfo)
    {
        unsigned i;

        /*从lcd_fb_probe探测函数设置的平台数据中再获得LCD相关信息的数据*/
        struct fb_var_screeninfo *var = &fbinfo->var;/*fb_info中的可变参数*/
        struct my2440fb_var    *fbvar = fbinfo->par;/*在lcd_fb_probe探测函数中设置的私有结构体数据*/
        struct s3c2410fb_mach_info *mach_info = fbvar->dev->platform_data;/*LCD的配置结构体数据,这个配置结构体的赋值在上一篇章的"3. 帧缓冲设备作为平台设备"中*/

        struct s3c2410fb_display *display = NULL;
        struct s3c2410fb_display *default_display = mach_info->displays + mach_info->default_display;
        int type = default_display->type;/*LCD的类型,看上一篇章的"3. 帧缓冲设备作为平台设备"中的type赋值是TFT类型*/

        /*验证X/Y解析度*/
        if (var->yres == default_display->yres &&
            var->xres == default_display->xres &&
            var->bits_per_pixel == default_display->bpp)
        {
            display = default_display;
        }
        else
        {
            for (i = 0; i < mach_info->num_displays; i++)
            {
                if (type == mach_info->displays[i].type &&
                 var->yres == mach_info->displays[i].yres &&
                 var->xres == mach_info->displays[i].xres &&
                 var->bits_per_pixel == mach_info->displays[i].bpp)
                {
                    display = mach_info->displays + i;
                    break;
                }
            }
        }

        if (!display)
        {
            return -EINVAL;
        }

        /*配置LCD配置寄存器1中的5-6位(配置成TFT类型)和配置LCD配置寄存器5*/
        fbvar->regs.lcdcon1 = display->type;
        fbvar->regs.lcdcon5 = display->lcdcon5;

        /* 设置屏幕的虚拟解析像素和高度宽度 */
        var->xres_virtual = display->xres;
        var->yres_virtual = display->yres;
        var->height = display->height;
        var->width = display->width;

        /* 设置时钟像素,行、帧切换值,水平同步、垂直同步长度值 */
        var->pixclock = display->pixclock;
        var->left_margin = display->left_margin;
        var->right_margin = display->right_margin;
        var->upper_margin = display->upper_margin;
        var->lower_margin = display->lower_margin;
        var->vsync_len = display->vsync_len;
        var->hsync_len = display->hsync_len;

        /*设置透明度*/
        var->transp.offset = 0;
        var->transp.length = 0;

       
    /*根据色位模式(BPP)来设置可变参数中R、G、B的颜色位域。对于这些参数值的设置请参考CPU数据
        手册中"显示缓冲区与显示点对应关系图",例如在上一篇章中我就画出了8BPP和16BPP时的对应关系图*/

        switch (var->bits_per_pixel)
        {
            case 1:
            case 2:
            case 4:
                var->red.offset  = 0;
                var->red.length  = var->bits_per_pixel;
                var->green       = var->red;
                var->blue        = var->red;
                break;
            case 8:/* 8 bpp 332 */
                if (display->type != S3C2410_LCDCON1_TFT)
                {
                    var->red.length     = 3;
                    var->red.offset     = 5;
                    var->green.length   = 3;
                    var->green.offset   = 2;
                    var->blue.length    = 2;
                    var->blue.offset    = 0;
                }else{
                    var->red.offset     = 0;
                    var->red.length     = 8;
                    var->green          = var->red;
                    var->blue           = var->red;
                }
                break;
            case 12:/* 12 bpp 444 */
                var->red.length         = 4;
                var->red.offset         = 8;
                var->green.length       = 4;
                var->green.offset       = 4;
                var->blue.length        = 4;
                var->blue.offset        = 0;
                break;
            case 16:/* 16 bpp */
                if (display->lcdcon5 & S3C2410_LCDCON5_FRM565)
                {
                    /* 565 format */
                    var->red.offset      = 11;
                    var->green.offset    = 5;
                    var->blue.offset     = 0;
                    var->red.length      = 5;
                    var->green.length    = 6;
                    var->blue.length     = 5;
                } else {
                    /* 5551 format */
                    var->red.offset      = 11;
                    var->green.offset    = 6;
                    var->blue.offset     = 1;
                    var->red.length      = 5;
                    var->green.length    = 5;
                    var->blue.length     = 5;
                }
                break;
            case 32:/* 24 bpp 888 and 8 dummy */
                var->red.length        = 8;
                var->red.offset        = 16;
                var->green.length      = 8;
                var->green.offset      = 8;
                var->blue.length       = 8;
                var->blue.offset       = 0;
                break;
        }

        return 0;
    }

    /*申请帧缓冲设备fb_info的显示缓冲区空间*/
    static int __init my2440fb_map_video_memory(struct fb_info *fbinfo)
    {
        dma_addr_t map_dma;/*用于保存DMA缓冲区总线地址*/
        struct my2440fb_var    *fbvar = fbinfo->par;/*获得在lcd_fb_probe探测函数中设置的私有结构体数据*/
        unsigned map_size = PAGE_ALIGN(fbinfo->fix.smem_len);/*获得FrameBuffer缓存的大小, PAGE_ALIGN定义在mm.h中*/

       
    /*将分配的一个写合并DMA缓存区设置为LCD屏幕的虚拟地址(对于DMA请参考DMA相关知识)
        dma_alloc_writecombine定义在arch/arm/mm/dma-mapping.c中*/

        fbinfo->screen_base = dma_alloc_writecombine(fbvar->dev, map_size, &map_dma, GFP_KERNEL);

        if (fbinfo->screen_base)
        {
            /*设置这片DMA缓存区的内容为空*/
            memset(fbinfo->screen_base, 0x00, map_size);

            /*将DMA缓冲区总线地址设成fb_info不可变参数中framebuffer缓存的开始位置*/
            fbinfo->fix.smem_start = map_dma;
        }

        return fbinfo->screen_base ? 0 : -ENOMEM;
    }

    /*释放帧缓冲设备fb_info的显示缓冲区空间*/
    static inline void my2440fb_unmap_video_memory(struct fb_info *fbinfo)
    {
        struct my2440fb_var    *fbvar = fbinfo->par;
        unsigned map_size = PAGE_ALIGN(fbinfo->fix.smem_len);

        /*跟申请DMA的地方想对应*/
        dma_free_writecombine(fbvar->dev, map_size, fbinfo->screen_base, fbinfo->fix.smem_start);
    }


    /*LCD FrameBuffer设备移除的实现,注意这里使用一个__devexit宏,和lcd_fb_probe接口函数相对应。
      在Linux内核中,使用了大量不同的宏来标记具有不同作用的函数和数据结构,这些宏在include/linux/init.h
      头文件中定义,编译器通过这些宏可以把代码优化放到合适的内存位置,以减少内存占用和提高内核效率。
      __devinit、__devexit就是这些宏之一,在probe()和remove()函数中应该使用__devinit和__devexit宏。
      又当remove()函数使用了__devexit宏时,则在驱动结构体中一定要使用__devexit_p宏来引用remove(),
      所以在第①步中就用__devexit_p来引用lcd_fb_remove接口函数。*/

    static int __devexit lcd_fb_remove(struct platform_device *pdev)
    {
        struct fb_info *fbinfo = platform_get_drvdata(pdev);
        struct my2440fb_var    *fbvar = fbinfo->par;

        /*从系统中注销帧缓冲设备*/
        unregister_framebuffer(fbinfo);

        /*停止LCD控制器的工作*/
        my2440fb_lcd_enable(fbvar, 0);

        /*延迟一段时间,因为停止LCD控制器需要一点时间 */
        msleep(1);

        /*释放帧缓冲设备fb_info的显示缓冲区空间*/
        my2440fb_unmap_video_memory(fbinfo);

        /*将LCD平台数据清空和释放fb_info空间资源*/
        platform_set_drvdata(pdev, NULL);
        framebuffer_release(fbinfo);

        /*释放中断资源*/
        free_irq(fbvar->lcd_irq_no, fbvar);

        /*释放时钟资源*/
        if (fbvar->lcd_clock)
        {
            clk_disable(fbvar->lcd_clock);
            clk_put(fbvar->lcd_clock);
            fbvar->lcd_clock = NULL;
        }

        /*释放LCD IO空间映射的虚拟内存空间*/
        iounmap(fbvar->lcd_base);

        /*释放申请的LCD IO端口所占用的IO空间*/
        release_resource(fbvar->lcd_mem);
        kfree(fbvar->lcd_mem);

        return 0;
    }

    /*停止LCD控制器的工作*/
    static void my2440fb_lcd_enable(struct my2440fb_var *fbvar, int enable)
    {
        unsigned long flags;

        /*在修改下面寄存器值之前先屏蔽中断,将中断状态保存到flags中*/
        local_irq_save(flags);

        if (enable)
        {
            fbvar->regs.lcdcon1 |= S3C2410_LCDCON1_ENVID;
        }
        else
        {
            fbvar->regs.lcdcon1 &= ~S3C2410_LCDCON1_ENVID;
        }

        writel(fbvar->regs.lcdcon1, fbvar->lcd_base + S3C2410_LCDCON1);

        /*恢复被屏蔽的中断*/
        local_irq_restore(flags);
    }

    /*对LCD FrameBuffer平台设备驱动电源管理的支持,CONFIG_PM这个宏定义在内核中*/
    #ifdef CONFIG_PM
    /*当配置内核时选上电源管理,则平台设备的驱动就支持挂起和恢复功能*/
    static int lcd_fb_suspend(struct platform_device *pdev, pm_message_t state)
    {
       
    /*挂起LCD设备,注意这里挂起LCD时并没有保存LCD控制器的各种状态,所以在恢复后LCD不会继续显示挂起前的内容
         若要继续显示挂起前的内容,则要在这里保存LCD控制器的各种状态,这里就不讲这个了,以后讲到电源管理再讲*/

        struct fb_info *fbinfo = platform_get_drvdata(pdev);
        struct my2440fb_var    *fbvar = fbinfo->par;

        /*停止LCD控制器的工作*/
        my2440fb_lcd_enable(fbvar, 0);

        msleep(1);

        /*停止时钟*/
        clk_disable(fbvar->lcd_clock);

        return 0;
    }

    static int lcd_fb_resume(struct platform_device *pdev)
    {
        /*恢复挂起的LCD设备*/
        struct fb_info *fbinfo = platform_get_drvdata(pdev);
        struct my2440fb_var    *fbvar = fbinfo->par;

        /*开启时钟*/
        clk_enable(fbvar->lcd_clock);

        /*初始化LCD控制器之前要延迟一段时间*/
        msleep(1);

        /*恢复时重新初始化LCD各寄存器*/
        my2440fb_init_registers(fbinfo);

        /*重新激活fb_info中所有的参数配置,该函数定义在第③步中再讲*/
        my2440fb_activate_var(fbinfo);

       
    /*正与挂起时讲到的那样,因为没保存挂起时LCD控制器的各种状态,
        所以恢复后就让LCD显示空白,该函数定义也在第③步中再讲*/

        my2440fb_blank(FB_BLANK_UNBLANK, fbinfo);

        return 0;
    }
    #else
    /*如果配置内核时没选上电源管理,则平台设备的驱动就不支持挂起和恢复功能,这两个函数也就无需实现了*/
    #define lcd_fb_suspend    NULL
    #define lcd_fb_resume    NULL
    #endif


    ③、帧缓冲设备驱动对底层硬件操作的函数接口实现(即:my2440fb_ops的实现):

    /*Framebuffer底层硬件操作各接口函数*/
    static struct fb_ops my2440fb_ops =
    {
        .owner          = THIS_MODULE,
        .fb_check_var   = my2440fb_check_var,/*第②步中已实现*/
        .fb_set_par     = my2440fb_set_par,/*设置fb_info中的参数,主要是LCD的显示模式*/
        .fb_blank       = my2440fb_blank,/*显示空白(即:LCD开关控制)*/
        .fb_setcolreg   = my2440fb_setcolreg,/*设置颜色表*/
        /*以下三个函数是可选的,主要是提供fb_console的支持,在内核中已经实现,这里直接调用即可*/
        .fb_fillrect    = cfb_fillrect,/*定义在drivers/video/cfbfillrect.c中*/
        .fb_copyarea    = cfb_copyarea,/*定义在drivers/video/cfbcopyarea.c中*/
        .fb_imageblit   = cfb_imageblit,/*定义在drivers/video/cfbimgblt.c中*/
    };

    /*设置fb_info中的参数,这里根据用户设置的可变参数var调整固定参数fix*/
    static int my2440fb_set_par(struct fb_info *fbinfo)
    {
        /*获得fb_info中的可变参数*/
        struct fb_var_screeninfo *var = &fbinfo->var;

        /*判断可变参数中的色位模式,根据色位模式来设置色彩模式*/
        switch (var->bits_per_pixel)
        {
            case 32:
            case 16:
            case 12:/*12BPP时,设置为真彩色(分成红、绿、蓝三基色)*/
                fbinfo->fix.visual = FB_VISUAL_TRUECOLOR;
                break;
            case 1:/*1BPP时,设置为黑白色(分黑、白两种色,FB_VISUAL_MONO01代表黑,FB_VISUAL_MONO10代表白)*/
                fbinfo->fix.visual = FB_VISUAL_MONO01;
                break;
            default:/*默认设置为伪彩色,采用索引颜色显示*/
                fbinfo->fix.visual = FB_VISUAL_PSEUDOCOLOR;
                break;
        }

        /*设置fb_info中固定参数中一行的字节数,公式:1行字节数=(1行像素个数*每像素位数BPP)/8 */
        fbinfo->fix.line_length = (var->xres_virtual * var->bits_per_pixel) / 8;

        /*修改以上参数后,重新激活fb_info中的参数配置(即:使修改后的参数在硬件上生效)*/
        my2440fb_activate_var(fbinfo);

        return 0;
    }

    /*重新激活fb_info中的参数配置*/
    static void my2440fb_activate_var(struct fb_info *fbinfo)
    {
        /*获得结构体变量*/
        struct my2440fb_var *fbvar = fbinfo->par;
        void __iomem *regs = fbvar->lcd_base;

        /*获得fb_info可变参数*/
        struct fb_var_screeninfo *var = &fbinfo->var;

       
    /*计算LCD控制寄存器1中的CLKVAL值, 根据数据手册中该寄存器的描述,计算公式如下:
        * STN屏:VCLK = HCLK / (CLKVAL * 2), CLKVAL要求>= 2
        * TFT屏:VCLK = HCLK / [(CLKVAL + 1) * 2], CLKVAL要求>= 0*/

        int clkdiv = my2440fb_calc_pixclk(fbvar, var->pixclock) / 2;

        /*获得屏幕的类型*/
        int type = fbvar->regs.lcdcon1 & S3C2410_LCDCON1_TFT;

        if (type == S3C2410_LCDCON1_TFT)
        {
            /*根据数据手册按照TFT屏的要求配置LCD控制寄存器1-5*/
            my2440fb_config_tft_lcd_regs(fbinfo, &fbvar->regs);

            --clkdiv;

            if (clkdiv < 0)
            {
                clkdiv = 0;
            }
        }
        else
        {
            /*根据数据手册按照STN屏的要求配置LCD控制寄存器1-5*/
            my2440fb_config_stn_lcd_regs(fbinfo, &fbvar->regs);

            if (clkdiv < 2)
            {
                clkdiv = 2;
            }
        }

        /*设置计算的LCD控制寄存器1中的CLKVAL值*/
        fbvar->regs.lcdcon1 |= S3C2410_LCDCON1_CLKVAL(clkdiv);

        /*将各参数值写入LCD控制寄存器1-5中*/
        writel(fbvar->regs.lcdcon1 & ~S3C2410_LCDCON1_ENVID, regs + S3C2410_LCDCON1);
        writel(fbvar->regs.lcdcon2, regs + S3C2410_LCDCON2);
        writel(fbvar->regs.lcdcon3, regs + S3C2410_LCDCON3);
        writel(fbvar->regs.lcdcon4, regs + S3C2410_LCDCON4);
        writel(fbvar->regs.lcdcon5, regs + S3C2410_LCDCON5);

        /*配置帧缓冲起始地址寄存器1-3*/
        my2440fb_set_lcdaddr(fbinfo);

        fbvar->regs.lcdcon1 |= S3C2410_LCDCON1_ENVID,
        writel(fbvar->regs.lcdcon1, regs + S3C2410_LCDCON1);
    }

    /*计算LCD控制寄存器1中的CLKVAL值*/
    static unsigned int my2440fb_calc_pixclk(struct my2440fb_var *fbvar, unsigned long pixclk)
    {
        /*获得LCD的时钟*/
        unsigned long clk = clk_get_rate(fbvar->lcd_clock);

       
    /* 像素时钟单位是皮秒,而时钟的单位是赫兹,所以计算公式为:
         * Hz -> picoseconds is / 10^-12
         */

        unsigned long long div = (unsigned long long)clk * pixclk;

        div >>= 12;            /* div / 2^12 */
        do_div(div, 625 * 625UL * 625); /* div / 5^12, do_div宏定义在asm/div64.h中*/

        return div;
    }

    /*根据数据手册按照TFT屏的要求配置LCD控制寄存器1-5*/
    static void my2440fb_config_tft_lcd_regs(const struct fb_info *fbinfo, struct s3c2410fb_hw *regs)
    {
        const struct my2440fb_var *fbvar = fbinfo->par;
        const struct fb_var_screeninfo *var = &fbinfo->var;

        /*根据色位模式设置LCD控制寄存器1和5,参考数据手册*/
        switch (var->bits_per_pixel)
        {
            case 1:/*1BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT1BPP;
                break;
            case 2:/*2BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT2BPP;
                break;
            case 4:/*4BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT4BPP;
                break;
            case 8:/*8BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT8BPP;
                regs->lcdcon5 |= S3C2410_LCDCON5_BSWP | S3C2410_LCDCON5_FRM565;
                regs->lcdcon5 &= ~S3C2410_LCDCON5_HWSWP;
                break;
            case 16:/*16BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT16BPP;
                regs->lcdcon5 &= ~S3C2410_LCDCON5_BSWP;
                regs->lcdcon5 |= S3C2410_LCDCON5_HWSWP;
                break;
            case 32:/*32BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT24BPP;
                regs->lcdcon5 &= ~(S3C2410_LCDCON5_BSWP | S3C2410_LCDCON5_HWSWP | S3C2410_LCDCON5_BPP24BL);
                break;
            default:/*无效的BPP*/
                dev_err(fbvar->dev, "invalid bpp %d\n", var->bits_per_pixel);
        }

        /*设置LCD配置寄存器2、3、4*/
        regs->lcdcon2 = S3C2410_LCDCON2_LINEVAL(var->yres - 1) |
                S3C2410_LCDCON2_VBPD(var->upper_margin - 1) |
                S3C2410_LCDCON2_VFPD(var->lower_margin - 1) |
                S3C2410_LCDCON2_VSPW(var->vsync_len - 1);

        regs->lcdcon3 = S3C2410_LCDCON3_HBPD(var->right_margin - 1) |
                S3C2410_LCDCON3_HFPD(var->left_margin - 1) |
                S3C2410_LCDCON3_HOZVAL(var->xres - 1);

        regs->lcdcon4 = S3C2410_LCDCON4_HSPW(var->hsync_len - 1);
    }

    /*根据数据手册按照STN屏的要求配置LCD控制寄存器1-5*/
    static void my2440fb_config_stn_lcd_regs(const struct fb_info *fbinfo, struct s3c2410fb_hw *regs)
    {
        const struct my2440fb_var    *fbvar = fbinfo->par;
        const struct fb_var_screeninfo *var = &fbinfo->var;

        int type = regs->lcdcon1 & ~S3C2410_LCDCON1_TFT;
        int hs = var->xres >> 2;
        unsigned wdly = (var->left_margin >> 4) - 1;
        unsigned wlh = (var->hsync_len >> 4) - 1;

        if (type != S3C2410_LCDCON1_STN4)
        {
            hs >>= 1;
        }

        /*根据色位模式设置LCD控制寄存器1,参考数据手册*/
        switch (var->bits_per_pixel)
        {
            case 1:/*1BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_STN1BPP;
                break;
            case 2:/*2BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_STN2GREY;
                break;
            case 4:/*4BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_STN4GREY;
                break;
            case 8:/*8BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_STN8BPP;
                hs *= 3;
                break;
            case 12:/*12BPP*/
                regs->lcdcon1 |= S3C2410_LCDCON1_STN12BPP;
                hs *= 3;
                break;
            default:/*无效的BPP*/
                dev_err(fbvar->dev, "invalid bpp %d\n", var->bits_per_pixel);
        }
        
        /*设置LCD配置寄存器2、3、4, 参考数据手册*/
        if (wdly > 3) wdly = 3;
        if (wlh > 3) wlh = 3;
        regs->lcdcon2 = S3C2410_LCDCON2_LINEVAL(var->yres - 1);

        regs->lcdcon3 = S3C2410_LCDCON3_WDLY(wdly) |
                S3C2410_LCDCON3_LINEBLANK(var->right_margin / 8) |
                S3C2410_LCDCON3_HOZVAL(hs - 1);

        regs->lcdcon4 = S3C2410_LCDCON4_WLH(wlh);
    }

    /*配置帧缓冲起始地址寄存器1-3,参考数据手册*/
    static void my2440fb_set_lcdaddr(struct fb_info *fbinfo)
    {
        unsigned long saddr1, saddr2, saddr3;
        struct my2440fb_var *fbvar = fbinfo->par;
        void __iomem *regs = fbvar->lcd_base;

        saddr1 = fbinfo->fix.smem_start >> 1;
        saddr2 = fbinfo->fix.smem_start;
        saddr2 += fbinfo->fix.line_length * fbinfo->var.yres;
        saddr2 >>= 1;
        saddr3 = S3C2410_OFFSIZE(0) | S3C2410_PAGEWIDTH((fbinfo->fix.line_length / 2) & 0x3ff);

        writel(saddr1, regs + S3C2410_LCDSADDR1);
        writel(saddr2, regs + S3C2410_LCDSADDR2);
        writel(saddr3, regs + S3C2410_LCDSADDR3);
    }

    /*显示空白,blank mode有5种模式,定义在fb.h中,是一个枚举*/
    static int my2440fb_blank(int blank_mode, struct fb_info *fbinfo)
    {
        struct my2440fb_var *fbvar = fbinfo->par;
        void __iomem *regs = fbvar->lcd_base;

        /*根据显示空白的模式来设置LCD是开启还是停止*/
        if (blank_mode == FB_BLANK_POWERDOWN)
        {
            my2440fb_lcd_enable(fbvar, 0);/*在第②步中定义*/
        }
        else
        {
            my2440fb_lcd_enable(fbvar, 1);/*在第②步中定义*/
        }

        /*根据显示空白的模式来控制临时调色板寄存器*/
        if (blank_mode == FB_BLANK_UNBLANK)
        {
            /*临时调色板寄存器无效*/
            writel(0x0, regs + S3C2410_TPAL);
        }
        else
        {
            /*临时调色板寄存器有效*/
            writel(S3C2410_TPAL_EN, regs + S3C2410_TPAL);
        }

        return 0;
    }

    /*设置颜色表*/
    static int my2440fb_setcolreg(unsigned regno,unsigned red,unsigned green,unsigned blue,unsigned transp,struct fb_info *fbinfo)
    {
        unsigned int val;
        struct my2440fb_var *fbvar = fbinfo->par;
        void __iomem *regs = fbvar->lcd_base;

        switch (fbinfo->fix.visual)
        {
            case FB_VISUAL_TRUECOLOR:
                /*真彩色*/
                if (regno < 16)
                {
                    u32 *pal = fbinfo->pseudo_palette;

                    val = chan_to_field(red, &fbinfo->var.red);
                    val |= chan_to_field(green, &fbinfo->var.green);
                    val |= chan_to_field(blue, &fbinfo->var.blue);

                    pal[regno] = val;
                }
                break;
            case FB_VISUAL_PSEUDOCOLOR:
                /*伪彩色*/
                if (regno < 256)
                {
                    val = (red >> 0) & 0xf800;
                    val |= (green >> 5) & 0x07e0;
                    val |= (blue >> 11) & 0x001f;

                    writel(val, regs + S3C2410_TFTPAL(regno));

                    /*修改调色板*/
                    schedule_palette_update(fbvar, regno, val);
                }
                break;
            default:
                return 1;
        }

        return 0;
    }

    static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
    {
        chan &= 0xffff;
        chan >>= 16 - bf->length;
        return chan << bf->offset;
    }

    /*修改调色板*/
    static void schedule_palette_update(struct my2440fb_var    *fbvar, unsigned int regno, unsigned int val)
    {
        unsigned long flags;
        unsigned long irqen;

        /*LCD中断挂起寄存器基地址*/
        void __iomem *lcd_irq_base = fbvar->lcd_base + S3C2410_LCDINTBASE;

        /*在修改中断寄存器值之前先屏蔽中断,将中断状态保存到flags中*/
        local_irq_save(flags);

        fbvar->palette_buffer[regno] = val;

        /*判断调色板是否准备就像*/
        if (!fbvar->palette_ready)
        {
            fbvar->palette_ready = 1;

            /*使能中断屏蔽寄存器*/
            irqen = readl(lcd_irq_base + S3C24XX_LCDINTMSK);
            irqen &= ~S3C2410_LCDINT_FRSYNC;
            writel(irqen, lcd_irq_base + S3C24XX_LCDINTMSK);
        }

        /*恢复被屏蔽的中断*/
        local_irq_restore(flags);
    }

     

    五、从整体上再描述一下FrameBuffer设备驱动实例代码的结构:
     
    1、在第①部分代码中主要做的事情有:
       a.将LCD设备注册到系统平台设备中;
       b.定义LCD平台设备结构体lcd_fb_driver。
     
    2、在第②部分代码中主要做的事情有:
       a.获取和设置LCD平台设备的各种资源;
       b.分配fb_info结构体空间;
       c.初始化fb_info结构体中的各参数;
       d.初始化LCD控制器;
       e.检查fb_info中可变参数;
       f.申请帧缓冲设备的显示缓冲区空间;
       g.注册fb_info。
     
    3、在第部分代码中主要做的事情有:
       a.实现对fb_info相关参数进行检查的硬件接口函数;
       b.实现对LCD显示模式进行设定的硬件接口函数;
       c.实现对LCD显示开关(空白)的硬件接口函数等。

     原文地址 http://hbhuanggang.cublog.cn
  • 相关阅读:
    使用XmlWriter写入XML
    Xml的一些基本概念(摘抄自w3school.com.cn)
    Basler相机启动问题xml读取出错
    c#开方,平方,sin函数计算
    如果遇到继承控件,添加到新项目里在工具栏找不到的情况下,F5启动一下,重新生成是不会有的,要运行成功才有
    添加项目文件时候不要把引用文件直接放到bin-debug里
    发现三个很好看的控件
    merge into 批量修改语句
    -- oracle上一些查询表和字段语句
    -- oracle上查看储存过程内容
  • 原文地址:https://www.cnblogs.com/cute/p/2022651.html
Copyright © 2011-2022 走看看