zoukankan      html  css  js  c++  java
  • 圆上的整点

    题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

    那么枚举2r的因数d,再枚举a,判断是否有满足条件的(a,b),其中a<b,并且互质。更新答案即可。

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    int res;
    ll gcd(ll a, ll b)
    {
    	return b == 0 ? a : gcd(b, a % b);
    }
    bool check(ll n)
    {
    	ll sq = sqrt(n);
    	return sq * sq == n;
    }
    void solve(ll rr)
    {
    	for (ll i = 1;i*i<= rr; i++)
    	//找i*i+j*j=rr,其中i<j ,并且i*i与j*j互质 
    	{
    		ll t = rr - i * i;
    		if (!check(t))
    		//t必须是完全平方数 
    		     continue;
    		ll j = sqrt(rr - i * i);
    		if (i >= j)
    		     break;
    		if (gcd(i*i, t) == 1)
    		 
    			res++;
    	}
    }
    int main()
    {
    	ll r;
    	scanf("%lld", &r);
    	res = 1;
    	r <<= 1;
    	for (ll d = 1;d*d <= r; d++)
    	//枚举d 
    	{
    		if (r% d != 0) 
    		     continue;
    		solve(r / d); //a*a+b*b=r/d
    		if (d*d== r) break;
    		solve(d);//a*a+b*b=d
    	}
    	printf("%d\n", res << 2);
    	return 0;
    }
    

      这个题目在分解约数那一块,可以用 Pollard_rho进行加速。

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define ll long long
    int n,ans=1;
    int fpow(int a,int b,int MOD)
    {
        int s=1;
        while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
        return s;
    }
    bool Miller_Rabin(int n)
    {
        if(n==2)return true;
        for(int tim=10;tim;--tim)
        {
            int a=rand()%(n-2)+2,p=n-1;
            if(fpow(a,p,n)!=1)return false;
            while(!(p&1))
            {
                p>>=1;int nw=fpow(a,p,n);
                if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
            }
        }
        return true;
    }
    vector<int> fac;
    int Pollard_rho(int n,int c)
    {
        int i=0,k=2,x=rand()%(n-1)+1,y=x;
        while(233)
        {
            ++i;x=(1ll*x*x%n+c)%n;
            int d=__gcd((y-x+n)%n,n);
            if(d!=1&&d!=n)return d;
            if(x==y)return n;
            if(i==k)y=x,k<<=1;
        }
    }
    void Fact(int n,int c)
    {
        if(n==1)return;
        if(Miller_Rabin(n)){fac.push_back(n);return;}
        int p=n;while(p>=n)p=Pollard_rho(p,c--);
        Fact(p,c);Fact(n/p,c);
    }
    int main()
    {
        cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
        for(int i=0,l=fac.size(),pos;i<l;i=pos+1)
        {
            int cnt=1;
            pos=i;while(pos<l-1&&fac[i]==fac[pos+1])++pos,++cnt;
            if(fac[i]==2)continue;
            if(fac[i]%4==1)ans=ans*(cnt*2+1);
        }
        printf("%d\n",ans*4);
        return 0;
    }
    

      进一步思考题目:bzoj 椭圆上的整点

    再进一步研究

    https://blog.csdn.net/caoyang1123/article/details/81434665?spm=1001.2101.3001.6650.7&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-7.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-7.no_search_link&utm_relevant_index=14

     教学视频

    https://www.bilibili.com/video/av12131743/

     再扩展

    求圆内整点数

    https://blog.csdn.net/Dutch_Habor/article/details/96368323

  • 相关阅读:
    UVA
    codevs3196 黄金宝藏
    UVA
    UVA
    3424:Candies(差分约束,Dijkstra)(配对堆优化
    1062:昂贵的聘礼(最短路/枚举)
    01分数规划问题(二分法与Dinkelbach算法)
    Desert King(01分数规划问题)(最优斜率生成树)
    Enlarge GCD(素数筛)
    hdu2085-2086
  • 原文地址:https://www.cnblogs.com/cutemush/p/15770505.html
Copyright © 2011-2022 走看看