题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

那么枚举2r的因数d,再枚举a,判断是否有满足条件的(a,b),其中a<b,并且互质。更新答案即可。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int res;
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
bool check(ll n)
{
ll sq = sqrt(n);
return sq * sq == n;
}
void solve(ll rr)
{
for (ll i = 1;i*i<= rr; i++)
//找i*i+j*j=rr,其中i<j ,并且i*i与j*j互质
{
ll t = rr - i * i;
if (!check(t))
//t必须是完全平方数
continue;
ll j = sqrt(rr - i * i);
if (i >= j)
break;
if (gcd(i*i, t) == 1)
res++;
}
}
int main()
{
ll r;
scanf("%lld", &r);
res = 1;
r <<= 1;
for (ll d = 1;d*d <= r; d++)
//枚举d
{
if (r% d != 0)
continue;
solve(r / d); //a*a+b*b=r/d
if (d*d== r) break;
solve(d);//a*a+b*b=d
}
printf("%d\n", res << 2);
return 0;
}
这个题目在分解约数那一块,可以用 Pollard_rho进行加速。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
int n,ans=1;
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
bool Miller_Rabin(int n)
{
if(n==2)return true;
for(int tim=10;tim;--tim)
{
int a=rand()%(n-2)+2,p=n-1;
if(fpow(a,p,n)!=1)return false;
while(!(p&1))
{
p>>=1;int nw=fpow(a,p,n);
if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
}
}
return true;
}
vector<int> fac;
int Pollard_rho(int n,int c)
{
int i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(1ll*x*x%n+c)%n;
int d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
void Fact(int n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
int p=n;while(p>=n)p=Pollard_rho(p,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
for(int i=0,l=fac.size(),pos;i<l;i=pos+1)
{
int cnt=1;
pos=i;while(pos<l-1&&fac[i]==fac[pos+1])++pos,++cnt;
if(fac[i]==2)continue;
if(fac[i]%4==1)ans=ans*(cnt*2+1);
}
printf("%d\n",ans*4);
return 0;
}
进一步思考题目:bzoj 椭圆上的整点
再进一步研究
https://blog.csdn.net/caoyang1123/article/details/81434665?spm=1001.2101.3001.6650.7&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-7.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-7.no_search_link&utm_relevant_index=14

教学视频
https://www.bilibili.com/video/av12131743/
再扩展
求圆内整点数
https://blog.csdn.net/Dutch_Habor/article/details/96368323