zoukankan      html  css  js  c++  java
  • How to get gradients with respect to the inputs in pytorch

    This is one way to find adversarial examples of CNN.

    The boilerplate:

    import torch
    from torch.autograd import Variable
    import torch.nn as nn
    import torch.optim as optim
    import numpy as np
    

      Define a simple network:

    class lolnet(nn.Module):
        def __init__(self):
            super(lolnet,self).__init__()
            self.a=nn.Linear(in_features=1,out_features=1,bias=False)
            self.a.weight = nn.Parameter(torch.FloatTensor([[0.6]]))
            self.b=nn.Linear(in_features=1,out_features=1,bias=False)
            self.b.weight=nn.Parameter(torch.FloatTensor([[0.6]]))
            
        def forward(self, inputs):
            return self.b(
                self.a(inputs)
            )
    

      The inputs

    inputs=np.array([[5]])
    inputs=torch.from_numpy(inputs).float()
    inputs=Variable(inputs)
    inputs.requires_grad=True
    net=lolnet()
    

      The optimizer

    opx=optim.SGD(
        params=[
            {"params":inputs}
        ],lr=0.5
    )
    

      The optimization process

    for i in range(50):
        x=net(inputs)
        loss=(x-1)**2
        opx.zero_grad() 
        loss.backward()
        opx.step()
        print(net.a.weight.data.numpy()[0][0],inputs.data.numpy()[0][0],loss.data.numpy()[0][0])
    

      The results are as below:

    0.6 4.712 0.6400001
    0.6 4.4613247 0.4848616
    0.6 4.243137 0.36732942
    0.6 4.0532265 0.27828723
    0.6 3.8879282 0.2108294
    0.6 3.7440526 0.15972354
    0.6 3.6188233 0.1210059
    0.6 3.5098238 0.09167358
    0.6 3.4149506 0.069451585
    0.6 3.332373 0.052616227
    0.6 3.2604973 0.039861854
    0.6 3.1979368 0.030199187
    0.6 3.143484 0.022878764
    0.6 3.0960886 0.017332876
    0.6 3.0548356 0.013131317
    0.6 3.0189288 0.00994824
    0.6 2.9876754 0.0075367615
    0.6 2.9604726 0.005709796
    0.6 2.9367952 0.0043257284
    0.6 2.9161866 0.003277142
    0.6 2.8982487 0.0024827516
    0.6 2.8826356 0.0018809267
    0.6 2.869046 0.001424982
    0.6 2.8572176 0.0010795629
    0.6 2.8469222 0.0008178701
    0.6 2.837961 0.00061961624
    0.6 2.830161 0.00046941772
    0.6 2.8233721 0.000355627
    0.6 2.8174632 0.0002694209
    0.6 2.81232 0.00020411481
    0.6 2.8078432 0.0001546371
    0.6 2.8039467 0.00011715048
    0.6 2.8005552 8.875507e-05
    0.6 2.7976031 6.724081e-05
    0.6 2.7950337 5.093933e-05
    0.6 2.7927973 3.8591857e-05
    0.6 2.7908509 2.9236677e-05
    0.6 2.7891567 2.2150038e-05
    0.6 2.7876818 1.6781378e-05
    0.6 2.7863982 1.2713146e-05
    0.6 2.785281 9.631679e-06
    0.6 2.7843084 7.296927e-06
    0.6 2.783462 5.527976e-06
    0.6 2.7827253 4.1880226e-06
    0.6 2.782084 3.1727632e-06
    0.6 2.7815259 2.4034823e-06
    0.6 2.78104 1.821013e-06
    0.6 2.7806172 1.3793326e-06
    0.6 2.780249 1.044933e-06
    0.6 2.7799287 7.9170513e-07
    
    Process finished with exit code 0
    

      

  • 相关阅读:
    Jqgrid demo-史上最强大,没有之一
    围巾的味道慢慢消退,织围巾的人又在何处呢?
    挺水的一门课,发现全系都过了,就自己挂了,这是一种什么样的感觉呢?
    个人感觉对程序员来说,熬夜是青春最大的杀手
    重装系统分区时,发现一个叫LVM的东西,找出来和大家分享
    如何参加开源项目
    和师兄们水平差的不是一丁半点
    华为RH2285安装过程及经验总结
    kilo本地库制作
    Cinder volume 的使用方法
  • 原文地址:https://www.cnblogs.com/cxxszz/p/8974640.html
Copyright © 2011-2022 走看看