zoukankan      html  css  js  c++  java
  • CodeForces 567C Geometric Progression

    Geometric Progression
    Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample Input

    Input
    5 2
    1 1 2 2 4
    Output
    4
    Input
    3 1
    1 1 1
    Output
    1
    Input
    10 3
    1 2 6 2 3 6 9 18 3 9
    Output
    6

    Hint

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <map>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 map <long long,long long> a;
     8 map <long long,long long> b;
     9 long long y[200005];
    10 int main()
    11 {
    12     long long n,k,o;
    13     long long i,j,x,m;
    14     long long s;
    15     while(scanf("%I64d %I64d",&n,&k)!=EOF)
    16     {
    17         s=0,o=0,m=0;
    18         a.clear();
    19         b.clear();
    20         if(k==1)
    21         {
    22             for(i=1;i<=n;i++)
    23             {
    24                 scanf("%I64d",&x);
    25                 a[x]++;
    26                 if(a[x]==3)
    27                 {
    28                     m++;
    29                     y[m]=x;
    30                 }
    31             }
    32             //prlong longf("*%d %d
    ",a[y[1]],m);
    33             for(i=1;i<=m;i++)
    34             {
    35                 s=s+(a[y[i]]*(a[y[i]]-1)/2)*(a[y[i]]-2)/3;
    36             }
    37         }
    38         else
    39         {
    40             for(i=1;i<=n;i++)
    41             {
    42                 scanf("%I64d",&x);
    43                 if(x==0)
    44                     o++;
    45                 a[x]++;
    46                 if(x%k==0 && x/k!=0)
    47                 {
    48                     s=s+b[x/k];
    49                     b[x]=a[x/k]+b[x];
    50                 }
    51             }
    52             s=s+o*(o-1)/2*(o-2)/3;
    53         }
    54         printf("%I64d
    ",s);
    55     }
    56     return 0;
    57 }
    View Code
  • 相关阅读:
    使用 Promise.all 同时发起多个请求
    vite 开发 Cesium 程序最佳配置实践
    【linux学习】使用grep命令获取过滤的数据作为下个命令的入参
    记一次k8s depolyment失败处理
    powerdesigner导出excel数据字典
    vue 时间格式
    ASP.NET MVC4 跨域配置
    Win10系统中切换虚拟桌面的快捷键如何设置
    不顾一切最简NHinbernate配置并读写数据库
    Windows time_wait过多解决办法
  • 原文地址:https://www.cnblogs.com/cyd308/p/4771553.html
Copyright © 2011-2022 走看看