zoukankan      html  css  js  c++  java
  • CodeForces 567C Geometric Progression

    Geometric Progression
    Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample Input

    Input
    5 2
    1 1 2 2 4
    Output
    4
    Input
    3 1
    1 1 1
    Output
    1
    Input
    10 3
    1 2 6 2 3 6 9 18 3 9
    Output
    6

    Hint

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <map>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 map <long long,long long> a;
     8 map <long long,long long> b;
     9 long long y[200005];
    10 int main()
    11 {
    12     long long n,k,o;
    13     long long i,j,x,m;
    14     long long s;
    15     while(scanf("%I64d %I64d",&n,&k)!=EOF)
    16     {
    17         s=0,o=0,m=0;
    18         a.clear();
    19         b.clear();
    20         if(k==1)
    21         {
    22             for(i=1;i<=n;i++)
    23             {
    24                 scanf("%I64d",&x);
    25                 a[x]++;
    26                 if(a[x]==3)
    27                 {
    28                     m++;
    29                     y[m]=x;
    30                 }
    31             }
    32             //prlong longf("*%d %d
    ",a[y[1]],m);
    33             for(i=1;i<=m;i++)
    34             {
    35                 s=s+(a[y[i]]*(a[y[i]]-1)/2)*(a[y[i]]-2)/3;
    36             }
    37         }
    38         else
    39         {
    40             for(i=1;i<=n;i++)
    41             {
    42                 scanf("%I64d",&x);
    43                 if(x==0)
    44                     o++;
    45                 a[x]++;
    46                 if(x%k==0 && x/k!=0)
    47                 {
    48                     s=s+b[x/k];
    49                     b[x]=a[x/k]+b[x];
    50                 }
    51             }
    52             s=s+o*(o-1)/2*(o-2)/3;
    53         }
    54         printf("%I64d
    ",s);
    55     }
    56     return 0;
    57 }
    View Code
  • 相关阅读:
    psacct监视用户执行的命令,如cpu时间和内存战胜,实时进程记账
    iostat,mpstat,sar即时查看工具,sar累计查看工具
    sysstat服务负载统计,如CPU占有率,网络使用率,磁盘速度
    linux top命令VIRT,RES,SHR,DATA的含义
    lsof查看进程打开了哪些文件目录套接字
    linux系统监控常用工具
    Linux系统维护修复模式
    centos单用户模式:修改ROOT密码和grub加密
    Linux系统启动过程介绍
    Android原生APP内分享
  • 原文地址:https://www.cnblogs.com/cyd308/p/4771553.html
Copyright © 2011-2022 走看看