zoukankan      html  css  js  c++  java
  • CodeForces 567C Geometric Progression

    Geometric Progression
    Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample Input

    Input
    5 2
    1 1 2 2 4
    Output
    4
    Input
    3 1
    1 1 1
    Output
    1
    Input
    10 3
    1 2 6 2 3 6 9 18 3 9
    Output
    6

    Hint

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <map>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 map <long long,long long> a;
     8 map <long long,long long> b;
     9 long long y[200005];
    10 int main()
    11 {
    12     long long n,k,o;
    13     long long i,j,x,m;
    14     long long s;
    15     while(scanf("%I64d %I64d",&n,&k)!=EOF)
    16     {
    17         s=0,o=0,m=0;
    18         a.clear();
    19         b.clear();
    20         if(k==1)
    21         {
    22             for(i=1;i<=n;i++)
    23             {
    24                 scanf("%I64d",&x);
    25                 a[x]++;
    26                 if(a[x]==3)
    27                 {
    28                     m++;
    29                     y[m]=x;
    30                 }
    31             }
    32             //prlong longf("*%d %d
    ",a[y[1]],m);
    33             for(i=1;i<=m;i++)
    34             {
    35                 s=s+(a[y[i]]*(a[y[i]]-1)/2)*(a[y[i]]-2)/3;
    36             }
    37         }
    38         else
    39         {
    40             for(i=1;i<=n;i++)
    41             {
    42                 scanf("%I64d",&x);
    43                 if(x==0)
    44                     o++;
    45                 a[x]++;
    46                 if(x%k==0 && x/k!=0)
    47                 {
    48                     s=s+b[x/k];
    49                     b[x]=a[x/k]+b[x];
    50                 }
    51             }
    52             s=s+o*(o-1)/2*(o-2)/3;
    53         }
    54         printf("%I64d
    ",s);
    55     }
    56     return 0;
    57 }
    View Code
  • 相关阅读:
    设计模式读书笔记-----适配器模式
    设计模式读书笔记-----命令模式
    一种另类的解决URL中文乱码问题--对中文进行加密、解密处理
    设计模式读书笔记-----单例模式
    Mysql的一些小知识点
    2-逻辑题二
    1-逻辑题一
    12-1054. 求平均值
    11-1048.数字加密
    10-string类的length()返回值一起的问题
  • 原文地址:https://www.cnblogs.com/cyd308/p/4771553.html
Copyright © 2011-2022 走看看