zoukankan      html  css  js  c++  java
  • poj 3071 football 概率dp

    Football
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2116   Accepted: 1055

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

    ----------------

    找方程不难,感觉难在如何判断两个i,j在第k场是否有可能相遇。

    ((i>>k)^1)==(j>>k) ,所以说为什么要^1呢,不懂orz

    -----------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    
    double f[16][512],p[512][512];
    int e[16];
    int n;
    
    int main()
    {
        memset(e,0,sizeof(e));
        memset(a,0,sizeof(a));
        e[0]=1;
        for (int i=1; i<=7; i++) e[i]=e[i-1]*2;
        //---nice---
        while (~scanf("%d",&n))
        {
            if (n==-1) break;
            memset(f,0,sizeof(f));
            memset(p,0,sizeof(p));
            for (int i=1; i<=e[n]; i++)
            {
                for (int j=1; j<=e[n]; j++)
                {
                    scanf("%lf",&p[i][j]);
                }
            }
            for (int i=1;i<=e[n];i++) f[0][i]=1;
            for (int i=1;i<=n;i++)
            {
                for (int j=1;j<=e[n];j++)
                {
                    for (int k=1;k<=e[n];k++)
                    {
                        if ((((j-1)>>(i-1))^1)==(k-1)>>(i-1))
                            f[i][j]+=f[i-1][j]*f[i-1][k]*p[j][k];
                    }
                }
            }
            double mx=0;
            int win=0;
            for (int i=1;i<=e[n];i++)
            {
                if (f[n][i]>mx)
                {
                    mx=f[n][i];
                    win=i;
                }
            }
            printf("%d\n",win);
        }
        return 0;
    }
    




  • 相关阅读:
    图书馆管理系统

    有理数类的设计
    题目4-多关键字排序(基于自定义比较函数)
    图总结
    树、二叉树、查找算法总结
    数据结构小结
    C语言文件
    第二次博客作业
    第一次博客作业
  • 原文地址:https://www.cnblogs.com/cyendra/p/3038365.html
Copyright © 2011-2022 走看看