zoukankan      html  css  js  c++  java
  • Poj 3552 Slim Span 最小生成树

    -----------------

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 5725   Accepted: 3008

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Source




    -----------------

    将边按权值排序。

    枚举最小边,从最小边开始做Kruskal。

    -----------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    
    using namespace std;
    
    const int maxn=1111;
    const int maxm=11111;
    const int INF=0x3f3f3f3f;
    
    class DisjointSet{
    private:
        int pa[maxn];
        int n;
    public:
        void makeSet(int n){
            this->n=n;
            for (int i=0;i<=n;i++) pa[i]=i;
        }
        int findSet(int x){
            if (x!=pa[x]) pa[x]=findSet(pa[x]);
            return pa[x];
        }
        void unionSet(int x,int y){
            x=findSet(x);
            y=findSet(y);
            if (x!=y) pa[x]=y;
        }
    }disjointSet;
    
    struct Edge{
        int u,v;
        int w;
        Edge(){}
        Edge(int u,int v,int w){
            this->u=u;
            this->v=v;
            this->w=w;
        }
        bool operator<(const Edge& rhs) const{
            return w<rhs.w;
        }
    };
    int n,m;
    Edge vec[maxm];
    
    int Kruskal(int s){
        int minCost=INF;
        int maxCost=-1;
        int cnt=0;
        disjointSet.makeSet(n);
        for (int i=s;i<m;i++){
            int u=vec[i].u;
            int v=vec[i].v;
            int w=vec[i].w;
            if (disjointSet.findSet(u)!=disjointSet.findSet(v)){
                disjointSet.unionSet(u,v);
                cnt++;
                minCost=min(minCost,w);
                maxCost=max(maxCost,w);
            }
        }
        if (cnt!=n-1) return INF;
        if (cnt==1) return 0;
        return maxCost-minCost;
    }
    
    int main()
    {
        while (~scanf("%d%d",&n,&m)){
            if (n==0&&m==0) break;
            for (int i=0;i<m;i++){
                scanf("%d%d%d",&vec[i].u,&vec[i].v,&vec[i].w);
            }
            sort(vec,vec+m);
            int ans=INF;
            for (int i=0;i<m;i++){
                ans=min(ans,Kruskal(i));
            }
            if (ans==INF) printf("-1
    ");
            else printf("%d
    ",ans);
        }
        return 0;
    }
    




    -----------------

  • 相关阅读:
    b_51_选数字(2*map记录前后状态+背包)
    b_51_最大M字段和(两个状态表示+两种决策)
    b_51_子序列的个数(先从可重复的情况出发+记录前一个数的位置)
    b_51_整数划分的方案数(dp+等差数列求和公式推出限制)
    b_nk_最长公共子序列 & 最长公共子串(dp+双指针 | 记录最长lms的长度,以及结尾位置)
    b_51_最大距离(排序=将两个维度降为一个维度 / 不太懂的单调栈)
    b_51_面积最大的矩形=柱状图 & 好子数组的最大值(暴力 / 单调栈优化)
    b_51_扔盘子(从极端角度考虑)
    肖sir多测师高级讲师_第二个月课堂013讲解robotfamework之基本运用(002)
    第二个月课堂013讲解robotfamework之基本介绍(001)
  • 原文地址:https://www.cnblogs.com/cyendra/p/3681571.html
Copyright © 2011-2022 走看看