转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47310657
DAGScheduler通过调用submitStage来提交stage。实现例如以下:
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
//< 获取该stage未提交的父stages,并按stage id从小到大排序
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
//< 若无未提交的父stage, 则提交该stage相应的tasks
submitMissingTasks(stage, jobId.get)
} else {
//< 若存在未提交的父stage, 依次提交全部父stage (若父stage也存在未提交的父stage, 则提交之, 依次类推); 并把该stage增加到等待stage队列中
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id)
}
}
submitStage先调用getMissingParentStages
来获取參数stageX(这里为了区分,取名为stageX)是否有未提交的父stages,若有。则依次递归(按stage id从小到大排列。也就是stage是从后往前提交的)提交父stages,并将stageX增加到waitingStages: HashSet[Stage]
中。对于要依次提交的父stage。也是如此。
getMissingParentStages
与DAGScheduler划分stage中介绍的getParentStages
有点像,但不同的是不再须要划分stage,并对每一个stage的状态做了推断,源代码及凝视例如以下:
//< 以參数stage为起点,向前遍历全部stage,推断stage是否为未提交,若使则增加missing中
private def getMissingParentStages(stage: Stage): List[Stage] = {
//< 未提交的stage
val missing = new HashSet[Stage]
//< 存储已经被訪问到得RDD
val visited = new HashSet[RDD[_]]
val waitingForVisit = new Stack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
if (getCacheLocs(rdd).contains(Nil)) {
for (dep <- rdd.dependencies) {
dep match {
//< 若为宽依赖。生成新的stage
case shufDep: ShuffleDependency[_, _, _] =>
//< 这里调用getShuffleMapStage不像在getParentStages时须要划分stage。而是直接依据shufDep.shuffleId获取相应的ShuffleMapStage
val mapStage = getShuffleMapStage(shufDep, stage.jobId)
if (!mapStage.isAvailable) {
// 若stage得状态为available则为未提交stage
missing += mapStage
}
//< 若为窄依赖,那就属于同一个stage。并将依赖的RDD放入waitingForVisit中,以可以在以下的while中继续向上visit。直至遍历了整个DAG图
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}
上面提到,若stageX存在未提交的父stages。则先提交父stages;那么,假设stageX没有未提交的父stage呢(比方。包括从HDFS读取数据生成HadoopRDD的那个stage是没有父stage的)?
这时会调用submitMissingTasks(stage, jobId.get)
,參数就是stageX及其相应的jobId.get。这个函数便是我们时常在其它文章或书籍中看到的将stage与taskSet相应起来,然后DAGScheduler将taskSet提交给TaskScheduler去运行的实施者。
这个函数的实现比較长。以下分段说明。
Step1: 得到RDD中须要计算的partition
对于Shuffle类型的stage,须要推断stage中是否缓存了该结果;对于Result类型的Final Stage。则推断计算Job中该partition是否已经计算完毕。
这么做(没有直接提交全部tasks)的原因是,stage中某个task运行失败其它运行成功的时候就须要找出这个失败的task相应要计算的partition而不是要计算全部partition
private def submitMissingTasks(stage: Stage, jobId: Int) {
stage.pendingTasks.clear()
//< 首先得到RDD中须要计算的partition
//< 对于Shuffle类型的stage,须要推断stage中是否缓存了该结果;
//< 对于Result类型的Final Stage,则推断计算Job中该partition是否已经计算完毕
//< 这么做的原因是。stage中某个task运行失败其它运行成功地时候就须要找出这个失败的task相应要计算的partition而不是要计算全部partition
val partitionsToCompute: Seq[Int] = {
stage match {
case stage: ShuffleMapStage =>
(0 until stage.numPartitions).filter(id => stage.outputLocs(id).isEmpty)
case stage: ResultStage =>
val job = stage.resultOfJob.get
(0 until job.numPartitions).filter(id => !job.finished(id))
}
}
Step2: 序列化task的binary
Executor可以通过广播变量得到它。每一个task运行的时候首先会反序列化
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
//< 对于ShuffleMapTask,将rdd及其依赖关系序列化。在Executor运行task之前会反序列化
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
//< 对于ResultTask,对rdd及要在每一个partition上运行的func
case stage: ResultStage =>
closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func): AnyRef).array()
}
//< 将序列化好的信息广播给全部的executor
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString)
runningStages -= stage
// Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e
${e.getStackTraceString}")
runningStages -= stage
return
}
Step3: 为每一个须要计算的partiton生成一个task
ShuffleMapStage相应的task全是ShuffleMapTask; ResultStage相应的全是ResultTask。task继承Serializable,要确保task是可序列化的。
val tasks: Seq[Task[_]] = stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = getPreferredLocs(stage.rdd, id)
//< RDD相应的partition
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, taskBinary, part, locs)
}
case stage: ResultStage =>
val job = stage.resultOfJob.get
//< id为输出分区索引,表示reducerID
partitionsToCompute.map { id =>
val p: Int = job.partitions(id)
val part = stage.rdd.partitions(p)
val locs = getPreferredLocs(stage.rdd, p)
new ResultTask(stage.id, taskBinary, part, locs, id)
}
}
Step4: 提交tasks
先用tasks来初始化一个TaskSet对象。再调用TaskScheduler.submitTasks提交
stage.pendingTasks ++= tasks
logDebug("New pending tasks: " + stage.pendingTasks)
//< 提交TaskSet至TaskScheduler
taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
//< 记录stage提交task的时间
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
以上,介绍了提交stage和提交tasks的实现。本文若有纰漏,请批评指正。