zoukankan      html  css  js  c++  java
  • bzoj3004 吊灯

    3004: 吊灯

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 52  Solved: 32
    [Submit][Status][Discuss]

    Description

           Alice家里有一盏非常大的吊灯。

    所谓吊灯,就是由非常多个灯泡组成。仅仅有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其它的灯泡上的。也就是说。整个吊灯实际上类似于一棵树。当中编号为1的灯泡是挂在天花板上的,剩下的灯泡都是挂在编号小于自己的灯泡上的。

           如今,Alice想要办一场派对,她想改造一下这盏吊灯,将灯泡换成不同的颜色。她希望同样颜色的灯泡都是相连的。而且每一种颜色的灯泡个数都是同样的。
           Alice希望你能告诉她。总共同拥有哪些方案呢?
           Alice是一个贪心的孩子,假设她发现方案不够多,或者太多了,就会非常不高兴,于是她会尝试调整。对于编号为x(x≠1)的灯泡。假设原来是挂在编号为f[x]的灯泡上,那么Alice会把第x个灯泡挂到第 ( f[x] + 19940105 ) mod (x-1) + 1 个灯泡上。

           因为九在古汉语中表示极大的数,于是,Alice决定仅仅调整9次。

    对于原始状态和每一次调整过的状态。Alice希望你依次告诉她每种状态下有哪些方案。

    Input

           第一行一个整数n,表示灯泡的数量。
           接下来一行,有n-1个整数Ui。第i个数字表示第i+1个灯泡挂在了Ui个的以下。保证编号为1的灯泡是挂在天花板上的。

    数字之间用逗号‘,’隔开且最后一个数字后面没有逗号。

    Output

           对于10种状态下的方案,须要依照顺序依次输出。
    对于每一种状态,须要先输出单独的一行。表示状态编号,如例子所看到的。
    之后若干行,每行1个整数。表示划分方案中每种颜色的灯泡个数。
           按升序输出。

     

    Sample Input

    6
    1,2,3,4,5

    Sample Output

    Case #1:
    1
    2
    3
    6
    Case #2:
    1
    2
    6
    Case #3:
    1
    3
    6
    Case #4:
    1
    3
    6
    Case #5:
    1
    3
    6
    Case #6:
    1
    2
    6
    Case #7:
    1
    2
    3
    6
    Case #8:
    1
    6
    Case #9:
    1
    2
    6
    Case #10:
    1
    3
    6

    HINT



           对于100%的数据,n<=1.2*106。




    有一个结论:k满足条件当且仅当存在n/k个节点满足以该节点为根的子树大小是k的倍数。

    证明:如果有n/k个大小为k的连通块。那对于每一个连通块中深度最小的节点。相应子树大小一定是k的倍数,必要性得证。如果存在n/k个大小为k的倍数的子树,那我们DFS一遍。每次遇到一个满足条件的节点,就将它砍下来,终于肯定会得到n/k个连通块,充分性得证。

    然后求出每个点字数大小,f[i]表示大小为i的子树个数对于,对于每个约数扫一遍f数组。推断是否可行




    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #define F(i,j,n) for(int i=j;i<=n;i++)
    #define D(i,j,n) for(int i=j;i>=n;i--)
    #define ll long long
    #define maxn 1200005
    using namespace std;
    int n,cnt;
    int fa[maxn],f[maxn],p[maxn],size[maxn];
    inline int read()
    {
    	int x=0,f=1;char ch=getchar();
    	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    	return x*f;
    }
    int main()
    {
    	n=read();
    	for(int i=1;i*i<=n;i++) if (n%i==0)
    	{
    		p[++cnt]=i;
    		if (i*i!=n) p[++cnt]=n/i;
    	}
    	sort(p+1,p+cnt+1);
    	F(t,1,10)
    	{
    		printf("Case #%d:
    ",t);
    		memset(size,0,sizeof(size));
    		memset(f,0,sizeof(f));
    		F(i,2,n) fa[i]=t==1?

    read():(fa[i]+19940105)%(i-1)+1; D(i,n,1) size[fa[i]]+=(++size[i]); F(i,1,n) f[size[i]]++; F(i,1,cnt) { int tmp=0; F(j,1,n/p[i]) tmp+=(f[p[i]*j]); if (tmp==n/p[i]) printf("%d ",p[i]); } } return 0; }



  • 相关阅读:
    caseStudy-20181216-Kafka(xxx)集群故障&解决办法
    caseStudy-20190312 xxx kafka集群因文件描述符超阀值引起集群不可用
    Kafka客户端二次封装扩展总体设计
    2018年工作规划-Kafka方向OKR
    针对Kafka的centos系统参数优化
    脚本kafka-configs.sh用法解析
    Kafka动态配置实现原理解析
    动态配置实现原理解析参考资料
    Topics类型配置
    Brokers类型配置
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/7290575.html
Copyright © 2011-2022 走看看