zoukankan      html  css  js  c++  java
  • Easy Problem

    D. Easy Problem
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Vasya is preparing a contest, and now he has written a statement for an easy problem. The statement is a string of length nn consisting of lowercase Latin latters. Vasya thinks that the statement can be considered hard if it contains a subsequence hard; otherwise the statement is easy. For example, hard, hzazrzd, haaaaard can be considered hard statements, while har, hart and drah are easy statements.

    Vasya doesn't want the statement to be hard. He may remove some characters from the statement in order to make it easy. But, of course, some parts of the statement can be crucial to understanding. Initially the ambiguity of the statement is 00, and removing ii-th character increases the ambiguity by aiai (the index of each character is considered as it was in the original statement, so, for example, if you delete character r from hard, and then character d, the index of d is still 44 even though you delete it from the string had).

    Vasya wants to calculate the minimum ambiguity of the statement, if he removes some characters (possibly zero) so that the statement is easy. Help him to do it!

    Recall that subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

    Input

    The first line contains one integer nn (1n1051≤n≤105) — the length of the statement.

    The second line contains one string ss of length nn, consisting of lowercase Latin letters — the statement written by Vasya.

    The third line contains nn integers a1,a2,,ana1,a2,…,an (1ai9982443531≤ai≤998244353).

    Output

    Print minimum possible ambiguity of the statement after Vasya deletes some (possibly zero) characters so the resulting statement is easy.

    Examples
    input
    Copy
    6
    hhardh
    3 2 9 11 7 1
    
    output
    Copy
    5
    
    input
    Copy
    8
    hhzarwde
    3 2 6 9 4 8 7 1
    
    output
    Copy
    4
    
    input
    Copy
    6
    hhaarr
    1 2 3 4 5 6
    
    output
    Copy
    0
    
    Note

    In the first example, first two characters are removed so the result is ardh.

    In the second example, 55-th character is removed so the result is hhzawde.

    In the third example there's no need to remove anything.

    #include<bits/stdc++.h>
    #define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
    #define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
    #define PER(i, a, b) for(int i = (a); i >= (b); -- i)
    typedef long long ll;
    using namespace std;
    const int maxn=1e5+5;
    template <class T>
    inline void rd(T &ret){
        char c;
        ret = 0;
        while ((c = getchar()) < '0' || c > '9');
        while (c >= '0' && c <= '9'){
            ret = ret * 10 + (c - '0'), c = getchar();
        }
    }
    int n;
    ll cnt[maxn];
    ll dp[5][maxn];
    char str[maxn],d[10]="hard";
    int main()
    {
        rd(n);
        scanf("%s",str+1);
     //   printf("%s",str+1);
        REP(i,1,n)rd(cnt[i]);
        REP(i,0,3){
           REP(j,0,n+1){
              dp[i][j]=0x3f3f3f3f;
           }
        }
        PER(i,n,1){
           if(str[i]==d[3]){
               if(dp[3][i+1]==0x3f3f3f3f)dp[3][i]=cnt[i];
               else dp[3][i]=dp[3][i+1]+cnt[i];
           }
           else dp[3][i]=dp[3][i+1];
        }
        PER(i,2,0){
           PER(j,n,1){
              if(str[j]==d[i]&&dp[i+1][j]!=0x3f3f3f3f){
                    if(dp[i][j+1]==0x3f3f3f3f){
                        dp[i][j]=min(cnt[j],dp[i+1][j]);
                    }
                    else dp[i][j]=min(dp[i][j+1]+cnt[j],dp[i+1][j]);
              }
              else dp[i][j]=dp[i][j+1];
           }
        }
        if(dp[0][1]==0x3f3f3f3f)cout<<0<<endl;
        else cout<<dp[0][1]<<endl;
        return 0;
    }
  • 相关阅读:
    Python中CreateCompatibleDC和CreateBitmap造成的内存泄漏
    POJ 2420 模拟退火
    LR(1)分析表-语法树-四元式
    C语言文法
    计蒜客 18018 热爱工作的蒜蒜 最短路+dp
    HDU 5988 最小费用流
    POJ 1808 平方剩余
    POJ 2115 单变元模线性方程
    计蒜客 17414 Exponial 指数降幂公式
    计蒜客 17412 Card Hand Sorting 最长公共子序列
  • 原文地址:https://www.cnblogs.com/czy-power/p/10474471.html
Copyright © 2011-2022 走看看