zoukankan      html  css  js  c++  java
  • free

    问题 J: free

    时间限制: 2 Sec  内存限制: 128 MB
    提交: 4  解决: 3
    [提交] [状态] [命题人:admin]

    题目描述

    Your are given an undirect connected graph.Every edge has a cost to pass.You should choose a path from S to T and you need to pay for all the edges in your path. However, you can choose at most k edges in the graph and change their costs to zero in the beginning. Please answer the minimal total cost you need to pay.

    输入

    The first line contains five integers n,m,S,T,K.
    For each of the following m lines, there are three integers a,b,l, meaning there is an edge that costs l between a and b.
    n is the number of nodes and m is the number of edges.

    输出

    An integer meaning the minimal total cost.

    样例输入

    3 2 1 3 1
    1 2 1
    2 3 2
    

    样例输出

    1
    

    提示

    1≤n,m≤103,1≤S,T,a,b≤n,0≤k≤m,1≤l≤106.
    Multiple edges and self loops are allowed.

    #include<bits/stdc++.h>
    #include<iostream>
    
    #define ll long long
    using namespace std;
    const int p = 1e9 + 7;
    const int maxn = 2e3 + 10;
    
    struct path{
        int to,nx,w;
    }o[maxn];
    
    struct atom{
        int ver,val,cost;
        atom(int _ver,int _val,int _cost):ver(_ver),val(_val),cost(_cost){}
        bool operator<(const atom& cur)const {
            return val>cur.val;
        }
    };
    
    int n,m,S,T,k,tot,head[maxn],vis[maxn][maxn];
    ll dp[maxn][maxn];
    
    inline void add_edge(int u,int v,int w){
        o[++tot].to=v;
        o[tot].w=w;
        o[tot].nx=head[u];
        head[u]=tot;
    }
    
    inline void dij(){
        for(register int i=1;i<=n;++i){
            for(register int j=0;j<=k;++j){
                dp[i][j]=-1;
            }
        }
        priority_queue<atom>q;
        q.push(atom(S,0,k));
        dp[S][k]=0;
        while(!q.empty()){
            atom cur=q.top();
            q.pop();
            int point=cur.ver,cnt=cur.cost;
            if(vis[point][cnt])continue;
            vis[point][cnt]=1;
            for(register int i=head[point];i;i=o[i].nx){
                int to=o[i].to;
                if(cnt>0&&(dp[to][cnt-1]==-1||dp[point][cnt]<dp[to][cnt-1])){
                    dp[to][cnt-1]=dp[point][cnt];
                    q.push(atom(to,dp[to][cnt-1],cnt-1));
                }
                if(dp[to][cnt]==-1||dp[to][cnt]>dp[point][cnt]+o[i].w){
                    dp[to][cnt]=dp[point][cnt]+o[i].w;
                    q.push(atom(to,dp[to][cnt],cnt));
                }
            }
        }
    }
    
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("1.txt","r",stdin);
    #endif
        scanf("%d%d%d%d%d",&n,&m,&S,&T,&k);
        for(register int i=1;i<=m;++i){
            int a,b,l;
            scanf("%d%d%d",&a,&b,&l);
            add_edge(a,b,l);
            add_edge(b,a,l);
        }
        dij();
        ll res=INT_MAX/2;
        for(register int i=0;i<=k;++i){
            if(dp[T][i]!=-1)res=min(res,dp[T][i]);
        }
        printf("%lld
    ",res);
        return 0;
    }
  • 相关阅读:
    Loadrunner脚本自动关联和手动关联
    Linux常用命令大全
    linux软件的安装和卸载
    PL/SQL DEVELOPER执行计划的查看
    利用pl/sql执行计划评估SQL语句的性能简析
    LoadRunner监控Linux与Windows方法
    LR添加Windows和Linux压力机实战
    《JS设计模式笔记》 4,桥接模式
    《ES6基础教程》之 Call 方法和 Apply 方法
    《JS设计模式笔记》 3,观察者模式
  • 原文地址:https://www.cnblogs.com/czy-power/p/11462191.html
Copyright © 2011-2022 走看看