Accept: 444 Submit: 2139
Time Limit: 10000 mSec Memory Limit : 262144 KB
Problem Description
Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:
Operation 1: AND opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).
Operation 2: OR opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).
Operation 3: XOR opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).
Operation 4: SUM L R
We want to know the result of A[L]+A[L+1]+...+A[R].
Now can you solve this easy problem?
Input
The first line of the input contains an integer T, indicating the number of test cases. (T≤100)
Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.
Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).
Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)
Output
Sample Input
Sample Output
Hint
A = [1 2 4 7]
SUM 0 2, result=1+2+4=7;
XOR 5 0 0, A=[4 2 4 7];
OR 6 0 3, A=[6 6 6 7];
SUM 0 2, result=6+6+6=18.
线段树,由于数组范围只有0到17,所以会有大量重复的块,所以直接线段树暴力来
#include <iostream> #include <algorithm> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h> using namespace std; typedef long long int LL; const int maxn=1e6; int num[maxn*4+5]; int sum[maxn*4+5]; int n,m; void pushup(int node) { sum[node]=sum[node<<1]+sum[node<<1|1]; if(num[node<<1]==num[node<<1|1]&&num[node<<1]!=-1) num[node]=num[node<<1]; else num[node]=-1; } void build(int node,int l,int r) { if(l==r) { scanf("%d",&num[node]); sum[node]=num[node]; return; } int mid=(l+r)>>1; build(node<<1,l,mid); build(node<<1|1,mid+1,r); pushup(node); } void update(int node,int l,int r,int L,int R,int tag,int flag) { if(L<=l&&r<=R) { if(num[node]!=-1) { if(tag==1) num[node]&=flag; else if(tag==2) num[node]|=flag; else num[node]^=flag; sum[node]=num[node]*(r-l+1); return; } int mid=(l+r)>>1; if(L<=mid) update(node<<1,l,mid,L,R,tag,flag); if(R>mid) update(node<<1|1,mid+1,r,L,R,tag,flag); pushup(node); return; } int mid=(l+r)>>1; if(num[node]!=-1) { sum[node<<1]=num[node]*(mid-l+1); sum[node<<1|1]=num[node]*(r-mid); num[node<<1]=num[node<<1|1]=num[node]; } if(L<=mid) update(node<<1,l,mid,L,R,tag,flag); if(R>mid) update(node<<1|1,mid+1,r,L,R,tag,flag); pushup(node); } int query(int node,int l,int r,int L,int R) { if(L<=l&&r<=R) { return sum[node]; } int mid=(l+r)>>1; if(num[node]!=-1) { sum[node<<1]=num[node]*(mid-l+1); sum[node<<1|1]=num[node]*(r-mid); num[node<<1]=num[node<<1|1]=num[node]; } int ret=0; if(L<=mid) ret+=query(node<<1,l,mid,L,R); if(R>mid) ret+=query(node<<1|1,mid+1,r,L,R); return ret; } int main() { int t; scanf("%d",&t); char a[10]; int x,y,z; while(t--) { scanf("%d%d",&n,&m); memset(num,-1,sizeof(num)); build(1,1,n); for(int i=1;i<=m;i++) { scanf("%s",a); if(a[0]=='A') { scanf("%d%d%d",&x,&y,&z); update(1,1,n,y+1,z+1,1,x); } else if(a[0]=='O') { scanf("%d%d%d",&x,&y,&z); update(1,1,n,y+1,z+1,2,x); } else if(a[0]=='X') { scanf("%d%d%d",&x,&y,&z); update(1,1,n,y+1,z+1,3,x); } else { scanf("%d%d",&x,&y); printf("%d ",query(1,1,n,x+1,y+1)); } } } return 0; }