zoukankan      html  css  js  c++  java
  • CodeForces 25C(Floyed 最短路)

    F - Roads in Berland
    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Each road has its own length — an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build k new roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances between all pairs of cities. Help them — for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road.

    Input

    The first line contains integer n (2 ≤ n ≤ 300) — amount of cities in Berland. Then there follow n lines with n integer numbers each — the matrix of shortest distances. j-th integer in the i-th row — di, j, the shortest distance between cities i and j. It is guaranteed thatdi, i = 0, di, j = dj, i, and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads.

    Next line contains integer k (1 ≤ k ≤ 300) — amount of planned roads. Following k lines contain the description of the planned roads. Each road is described by three space-separated integers aibici (1 ≤ ai, bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 1000) — ai and bi — pair of cities, which the road connects, ci — the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself.

    Output

    Output k space-separated integers qi (1 ≤ i ≤ k). qi should be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to i. Roads are numbered from 1 in the input order. Each pair of cities should be taken into account in the sum exactly once, i. e. we count unordered pairs.

    Sample Input

    Input
    2
    0 5
    5 0
    1
    1 2 3
    
    Output
    3 
    Input
    3
    0 4 5
    4 0 9
    5 9 0
    2
    2 3 8
    1 2 1
    
    Output

    17 12


    这道题目对每次增加的路跑一下Floyed就好了,输出格式好像没有限制

    #include <iostream>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <math.h>
    #include <stdio.h>
    
    using namespace std;
    int a[305][305];
    int k;
    int n;
    int x,y,z;
    int main()
    {
       scanf("%d",&n);
       int sum=0;
       for(int i=1;i<=n;i++)
    	   for(int j=1;j<=n;j++)
    	   {scanf("%d",&a[i][j]);sum+=a[i][j];}
       sum/=2;
       scanf("%d",&k);
       long long int num;
       for(int i=1;i<=k;i++)
       {
           scanf("%d%d%d",&x,&y,&z);
    	   num=0;
    	   if(a[x][y]>z)
    	   {
            // sum-=(a[x][y]-z);
    		  a[x][y]=z;
    		  a[y][x]=z;
    	   }
    	   for(int i=1;i<=n;i++)
    	   {
    		   for(int j=1;j<=n;j++)
    		   {
    
    				 if(a[i][j]>(a[i][x]+a[y][j]+a[x][y]))
    				 {
    					
    					  //num=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
                         //sum-=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
    					 a[i][j]=(a[i][x]+a[y][j]+a[x][y]);
    					 //a[j][i]=(a[i][x]+a[y][j]+a[x][y]);
    					 
    				 }
    				 if(a[i][j]>(a[i][y]+a[x][j]+a[x][y]))
    				 {
    					 //num=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
                         //sum-=(a[i][j]-a[i][y]-a[x][j]-a[x][y]);
    					 a[i][j]=(a[i][y]+a[x][j]+a[x][y]);
    					 //a[j][i]=(a[i][y]+a[x][j]+a[x][y]);
    					 
    				 }
    				 num+=a[i][j];
    
    		   }
    	   }
    	   printf("%lld ",num/2);
    	   
       }
       printf("
    ");
       return 0;
    }




  • 相关阅读:
    单据的多个状态字段
    Win7 如何阻止程序联网
    强制关机.bat
    Delphi Class of
    坐标转换 GetCursorPos与转换
    Delphi 的RTTI机制浅探-2
    Delphi 的RTTI机制浅探-1
    Delphi 的RTTI机制-3
    Delphi 的RTTI机制-2
    Delphi 的RTTI机制-1
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228750.html
Copyright © 2011-2022 走看看