先利用二分法找到目标值,然后分别在其前半部分,后半部分用二分法找到目标值的最小范围,最大范围
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { vector<int>res(2,-1); if(nums.size()==0) return res; int low=0,high=nums.size()-1,mid; int mid1,high1,mid2,low2; while(low<=high &&low>=0) { mid=(low+high)/2; if(nums[mid]==target) { if(nums[low]==target)res[0]=low; else { high1=mid; while(low<high1) { mid1=(high1+low)/2; if(nums[mid1]==target) if(nums[mid1-1]!=target){res[0]=low=mid1;break;} else high1=mid1-1; else low=mid1+1; } res[0]=low; } if(nums[high]==target) res[1]=high; else{ low2=mid; while(low2<high) { mid2=(high+low2)/2; if(nums[mid2]==target) if(nums[mid2+1]!=target) {res[1]=low2=mid2;break;} else low2=mid2+1; else high=mid2-1; } res[1]=low2; } break; } else if(nums[mid]<target) low=mid+1; else high=mid-1; } return res; } };
我的逻辑太饶了,下面是网上的大牛之作
vector<int> searchRange(int A[], int n, int target) { int i = 0, j = n - 1; vector<int> ret(2, -1); // Search for the left one while (i < j) { int mid = (i + j) /2; if (A[mid] < target) i = mid + 1; else j = mid; } if (A[i]!=target) return ret; else ret[0] = i; // Search for the right one j = n-1; // We don't have to set i to 0 the second time. while (i < j) { int mid = (i + j) /2 + 1; // Make mid biased to the right if (A[mid] > target) j = mid - 1; else i = mid; // So that this won't make the search range stuck. } ret[1] = j; return ret; }