zoukankan      html  css  js  c++  java
  • TensorFlow从入门到理解(二):你的第一个神经网络

    运行代码:

    from __future__ import print_function
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 神经层函数
    def add_layer(inputs, in_size, out_size, activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    # 导入数据
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    # 利用占位符定义我们所需的神经网络输入
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    # 定义隐藏层
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    
    # 定义输出层
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # 计算误差和提供准确率
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    init = tf.global_variables_initializer()
    # 输出结果
    sess = tf.Session()
    sess.run(init)
    
    # matplotlib可视化
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.scatter(x_data, y_data)
    plt.ion()
    plt.show()
    
    # 机器学习,学习1000次
    for i in range(1000):
        # 每50步输出学习误差
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            # 可视化结果和改进
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value = sess.run(prediction, feed_dict={xs: x_data})
            # 用红色和宽度为5的线来显示预测结果,并暂停0.1秒
            lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
            plt.pause(1)
    

    运行结果:

  • 相关阅读:
    类的使用(基础)
    <cf>Two Problems
    <cf>Walking in the Rain
    一些程序的整理
    <codeforces>Little Elephant and Sorting
    HDU 1172 猜数字(枚举)
    HDUOJ 1879 继续畅通工程
    error C2679: binary '<<' : no operator defined which takes a righthand operand of type 'class std::basic_s
    HDUOJ 1198 Farm Irrigation(并查集)
    HDU 1222 Wolf and Rabbit
  • 原文地址:https://www.cnblogs.com/darklights/p/9930089.html
Copyright © 2011-2022 走看看