题意:给出一幅无向图,用每条边的编号及其两个端点编号描述,求无向图的欧拉回路,按字典序最小的边的编号输出;
思路:若存在度数为奇数的点,则欧拉回路不存在;dfs求欧拉回路;
#include<cstdio> #include<cstring> #include<algorithm> #define maxn 2000 #define maxm 50 using namespace std; struct node{ int s,t; }r[maxn]; bool vis[maxn]; int deg[maxm],s[maxn];//节点的度deg[],边序列s[] int n,S,stop; //边数n,节点的最小编号S,欧拉回路的边数stop bool exist() //若存在度数为奇数的节点,则返回0,不存在欧拉回路; { for(int i=1;i<maxm;i++) if(deg[i]%2==1) return 0; return 1; } void dfs(int now) { for(int i=1;i<=n;i++) if(!vis[i]&&(r[i].s==now||r[i].t==now)){//递归搜索与now相连的未访问的边 vis[i]=1; dfs(r[i].s+r[i].t-now); //该边的另一端点 s[++stop]=i; } } int main() { int x,y,num; while(scanf("%d%d",&x,&y)){ if(x<=0||y<=0) break; S=min(x,y);n=0; memset(deg,0,sizeof(deg)); scanf("%d",&num); r[num].s=x;r[num].t=y; deg[x]++;deg[y]++; n=max(n,num); while(scanf("%d%d",&x,&y)){ if(x<=0) break; S=min(x,y); scanf("%d",&num); r[num].s=x;r[num].t=y; deg[x]++;deg[y]++; n=max(n,num); } if(exist()){ //确保无度数为奇数的点 stop=0; memset(vis,0,sizeof(vis)); dfs(S); //从最小节点出发,递归计算欧拉回路 for(int i=stop;i>=2;i--) printf("%d ",s[i]); printf("%d ",s[1]); } else printf("Round trip does not exist. "); } return 0; }