zoukankan      html  css  js  c++  java
  • G

    G - Visible Trees

    There are many trees forming a m * n grid, the grid starts from (1,1). Farmer Sherlock is standing at (0,0) point. He wonders how many trees he can see.

    If two trees and Sherlock are in one line, Farmer Sherlock can only see the tree nearest to him.

    Input

    The first line contains one integer t, represents the number of test cases. Then there are multiple test cases. For each test case there is one line containing two integers m and n(1 ≤ m, n ≤ 100000)

    Output

    For each test case output one line represents the number of trees Farmer Sherlock can see.

    Sample Input

    2
    1 1
    2 3
    

    Sample Output

    1
    5
    

    题意:

    一个m*n的格子,每个格子里面都是一棵树,左上角坐标为(1,1),右上角坐标为(m,n),假设你站在(0,0),你最多能看到多少棵树

    m=2,n=3时

    ​ @@@

    ​ @@@

    能看见(1,1),(1,2),(1,3)(2,1)(2,3)这五棵树,因为从(0,0)看(2,2)的过程中被树(1,1)挡住了

    这道题其实就是对于每棵树(x,y),如果说x,y存在大于1的公因子,证明(x,y)这棵树肯定被挡住了,被挡住的这个线的斜率为y/x,因为k>1,所以在这一条线这棵树不能被看到,如果互为素数,证明(x,y)这颗树肯定没被挡住,故求矩阵中互素的坐标即可。

    #include<cstdio>
    #include<algorithm>
    #include<string>
    #include<cstring>
    #include<iostream>
    #include<iomanip>
    #include<map>
    #include<vector>
    #define mset(a,b)   memset(a,b,sizeof(a))
    using namespace std;
    typedef unsigned long long ull;
    typedef long long ll;
    const int maxn=1e5;
    const int branch=26;
    const int inf=0x3f3f3f3f;
    const int MOD=1e6+7;
    int book[maxn+10],prime[(int)5e4+10];
    int ui[maxn+10];
    int top;
    //vector<int> fp;//用数组ui记录前k个数的各种组合
    void init()
    {
        top=0;
        book[0]=book[1]=1;
        for(int i=2;i*i<=maxn;++i)
            if(!book[i])
        {
            for(int j=i*i;j<=maxn;j+=i)
                book[j]=1;
        }
        for(int i=2;i<=maxn;++i)
            if(!book[i])
                prime[top++]=i;
    }
    void get_prime(int val,vector<int>& pf)//求出val的所有素因子 返回到vector内
    {
        pf.clear();
        for(int i=0;prime[i]*prime[i]<=val;++i)
        {
            if(!(val%prime[i]))
            {
                 pf.push_back(prime[i]);
    //             printf("%d ",prime[i]);
            }
    
            while(!(val%prime[i]))
            {
                val/=prime[i];
            }
        }
        if(val>1)
        {
             pf.push_back(val);
    //         printf("%d ",val);
        }
    //    puts("");
    
    }
    int f(int a,int b)//求1~a中 互质的数目
    {
    
        if(a==0)
            return 0;
        int sum=0;
        int cnt=0;
        vector<int>fp;
        get_prime(b,fp);
        ui[cnt++]=1;
        int t;//记下前几个组合的个数   前几个组合存在ui数字里面。
        for(int i=0;i<fp.size();++i)//第i+1个数与前i个数的各种组合搞
        {
            t=cnt;
            for(int j=0;j<t;++j)
            {
                ui[cnt++]=fp[i]*ui[j]*-1;
            }
        }
        for(int i=0;i<cnt;++i)
        {
            sum+=a/ui[i];
    //        cout<<ui[i]<<" ";
        }
    //    cout<<endl;
        return sum;
    }
    int main()
    {
        int t,a,b;
        ll sum;
        init();
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d %d",&a,&b);
            sum=0ll;
            for(int i=1;i<=a;++i)
            {
                sum+=f(b,i);
            }
            printf("%lld
    ",sum);
        }
    }
    
  • 相关阅读:
    linux常用命令
    linux下redis配置
    Git使用命令
    linux学习笔记
    NOPI读取Excel2003、Excel2007或更高级的兼容性问题
    netcore开发常用命令
    netcore3.0 dotnet ef执行报错
    vscode配置nuget常见问题
    PDMReader结合PowerDesigner导出word格式数据字典
    微信网页授权开发遇到问题
  • 原文地址:https://www.cnblogs.com/dchnzlh/p/10427277.html
Copyright © 2011-2022 走看看