zoukankan      html  css  js  c++  java
  • 【特征检测】BRISK特征提取算法

    【特征检测】BRISK特征提取算法
    原创hujingshuang 发布于2015-07-24 22:59:21 阅读数 17840 收藏
    展开
    简介
            BRISK算法是2011年ICCV上《BRISK:Binary Robust Invariant Scalable Keypoints》文章中,提出来的一种特征提取算法,也是一种二进制的特征描述算子。

           它具有较好的旋转不变性、尺度不变性,较好的鲁棒性等。在图像配准应用中,速度比较:SIFT<SURF<BRISK<FREAK<ORB,在对有较大模糊的图像配准时,BRISK算法在其中表现最为出色。

    BRISK算法
    特征点检测
            BRISK算法主要利用FAST9-16进行特征点检测(为什么是主要?因为用到一次FAST5-8),可参见博客:FAST特征点检测算法。要解决尺度不变性,就必须在尺度空间进行特征点检测,于是BRISK算法中构造了图像金字塔进行多尺度表达。

    建立尺度空间
            构造n个octave层(用ci表示)和n个intra-octave层(用di表示),文章中n=4,i={0,1,...,n-1}。假设有图像img,octave层的产生:c0层就是img原图像,c1层是c0层的2倍下采样,c2层是c1层的2倍下采样,以此类推。intra-octave层的产生:d0层是img的1.5倍下采样,d1层是d0层的2倍下采样(即img的2*1.5倍下采样),d2层是d1层的2倍下采样,以此类推。

    则ci、di层与原图像的尺度关系用t表示为:,

    ci、di层与原图像大小关系为:

            由于n=4,所以一共可以得到8张图,octave层之间尺度(缩放因子)是2倍关系,intra-octave层之间尺度(缩放因子)也是2倍关系。

    特征点检测
            对这8张图进行FAST9-16角点检测,得到具有角点信息的8张图,对原图像img进行一次FAST5-8角点检测(当做d(-1)层,虚拟层),总共会得到9幅有角点信息的图像。

    非极大值抑制
            对这9幅图像,进行空间上的非极大值抑制(同SIFT算法的非极大值抑制):特征点在位置空间(8邻域点)和尺度空间(上下层2x9个点),共26个邻域点的FAST的得分值要最大,否则不能当做特征点;此时得到的极值点还比较粗糙,需要进一步精确定位。

    亚像素插值
            进过上面步骤,得到了图像特征点的位置和尺度,在极值点所在层及其上下层所对应的位置,对FAST得分值(共3个)进行二维二次函数插值(x、y方向),得到真正意义上的得分极值点及其精确的坐标位置(作为特征点位置);再对尺度方向进行一维插值,得到极值点所对应的尺度(作为特征点尺度)。

    特征点描述
    高斯滤波
           现在,我们得到了特征点的位置和尺度(t)后,要对特征点赋予其描述符。均匀采样模式:以特征点为中心,构建不同半径的同心圆,在每个圆上获取一定数目的等间隔采样点(所有采样点包括特征点,一共N个),由于这种邻域采样模式会引起混叠效应,所以需要对同心圆上的采样点进行高斯滤波。

           采样模式如下图,蓝圈表示;以采样点为中心,为方差进行高斯滤波,滤波半径大小与高斯方差的大小成正比,红圈表示。最终用到的N个采样点是经过高斯平滑后的采样点。下图是t=1时的。(文章中:N=60)

    局部梯度计算
             由于有N个采样点,则采样点两两组合成一对,共有N(N-1)/2钟组合方式,所有组合方式的集合称作采样点对,用集合表示,其中像素分别是、,δ表示尺度。用表示特征点局部梯度集合,则有:

    定义短距离点对子集、长距离点对子集(L个):

    其中,,,t是特征点所在的尺度。

    现在要利用上面得到的信息,来计算特征点的主方向(注意:此处只用到了长距离子集),如下:

    特征描述符
             要解决旋转不变性,则需要对特征点周围的采样区域进行旋转到主方向,旋转后得到新的采样区域,采样模式同上。BRISK描述子是二进制的特征,由采样点集合可得到N(N-1)/2对采样点对,就可以得到N(N-1)/2个距离的集合(包含长、短距离子集),考虑其中短距离子集中的512个短距离点对,进行二进制编码,判断方式如下:

    其中,带有上标,表示经过旋转a角度后的,新的采样点。由此可得到,512Bit的二进制编码,也就是64个字节(BRISK64)。

    匹配方法
    汉明距离进行比较,与其他二进制描述子的匹配方式一样。

    实验
    opencv代码
    #include <cv.h>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/core/core.hpp>
    #include <opencv2/nonfree/features2d.hpp>
    #include <opencv2/nonfree/nonfree.hpp>
    #include <Windows.h>

    using namespace cv;
    using namespace std;

    int main()
    {
    //Load Image
    Mat c_src1 = imread( "1.png");
    Mat c_src2 = imread("2.png");
    Mat src1 = imread( "1.png", CV_LOAD_IMAGE_GRAYSCALE);
    Mat src2 = imread( "2.png", CV_LOAD_IMAGE_GRAYSCALE);
    if( !src1.data || !src2.data )
    {
    cout<< "Error reading images " << std::endl;
    return -1;
    }
    //feature detect
    BRISK detector;
    vector<KeyPoint> kp1, kp2;
    double start = GetTickCount();
    detector.detect( src1, kp1 );
    detector.detect( src2, kp2 );
    //cv::BRISK extractor;
    Mat des1,des2;//descriptor
    detector.compute(src1, kp1, des1);
    detector.compute(src2, kp2, des2);
    Mat res1,res2;
    int drawmode = DrawMatchesFlags::DRAW_RICH_KEYPOINTS;
    drawKeypoints(c_src1, kp1, res1, Scalar::all(-1), drawmode);//画出特征点
    drawKeypoints(c_src2, kp2, res2, Scalar::all(-1), drawmode);
    cout<<"size of description of Img1: "<<kp1.size()<<endl;
    cout<<"size of description of Img2: "<<kp2.size()<<endl;

    BFMatcher matcher(NORM_HAMMING);
    vector<DMatch> matches;
    matcher.match(des1, des2, matches);
    double end = GetTickCount();
    cout<<"耗时:"<<(end - start) <<"ms"<<endl;
    Mat img_match;
    drawMatches(src1, kp1, src2, kp2, matches, img_match);
    cout<<"number of matched points: "<<matches.size()<<endl;
    imshow("matches",img_match);
    cvWaitKey(0);
    cvDestroyAllWindows();
    return 0;
    }
    实验结果

    视频地址
    http://v.youku.com/v_show/id_XMTI5MzI3Mzk0OA==.html
    代码分析
    由于代码都很长,只列出了brisk类的两个方法,其余详见:..opencvsourcesmodulesfeatures2dsrcrisk.c
    // construct the image pyramids(构造图像金字塔)
    void
    BriskScaleSpace::constructPyramid(const cv::Mat& image)
    {

    // set correct size:
    pyramid_.clear();

    // fill the pyramid:
    pyramid_.push_back(BriskLayer(image.clone()));
    if (layers_ > 1)
    {
    pyramid_.push_back(BriskLayer(pyramid_.back(), BriskLayer::CommonParams::TWOTHIRDSAMPLE));//d0层是2/3
    }
    const int octaves2 = layers_;

    for (uchar i = 2; i < octaves2; i += 2)
    {
    pyramid_.push_back(BriskLayer(pyramid_[i - 2], BriskLayer::CommonParams::HALFSAMPLE));//c?层是前两层的1/2
    pyramid_.push_back(BriskLayer(pyramid_[i - 1], BriskLayer::CommonParams::HALFSAMPLE));//d?层是前两层的1/2(除d0层外)
    }
    }
    //提取特征点
    void
    BriskScaleSpace::getKeypoints(const int threshold_, std::vector<cv::KeyPoint>& keypoints)
    {
    // make sure keypoints is empty
    keypoints.resize(0);
    keypoints.reserve(2000);

    // assign thresholds
    int safeThreshold_ = (int)(threshold_ * safetyFactor_);
    std::vector<std::vector<cv::KeyPoint> > agastPoints;
    agastPoints.resize(layers_);

    // go through the octaves and intra layers and calculate fast corner scores:
    for (int i = 0; i < layers_; i++)
    {
    // call OAST16_9 without nms
    BriskLayer& l = pyramid_[i];
    l.getAgastPoints(safeThreshold_, agastPoints[i]);
    }

    if (layers_ == 1)
    {
    // just do a simple 2d subpixel refinement...
    const size_t num = agastPoints[0].size();
    for (size_t n = 0; n < num; n++)
    {
    const cv::Point2f& point = agastPoints.at(0)[n].pt;
    // first check if it is a maximum:
    if (!isMax2D(0, (int)point.x, (int)point.y))
    continue;

    // let's do the subpixel and float scale refinement:
    BriskLayer& l = pyramid_[0];
    int s_0_0 = l.getAgastScore(point.x - 1, point.y - 1, 1);
    int s_1_0 = l.getAgastScore(point.x, point.y - 1, 1);
    int s_2_0 = l.getAgastScore(point.x + 1, point.y - 1, 1);
    int s_2_1 = l.getAgastScore(point.x + 1, point.y, 1);
    int s_1_1 = l.getAgastScore(point.x, point.y, 1);
    int s_0_1 = l.getAgastScore(point.x - 1, point.y, 1);
    int s_0_2 = l.getAgastScore(point.x - 1, point.y + 1, 1);
    int s_1_2 = l.getAgastScore(point.x, point.y + 1, 1);
    int s_2_2 = l.getAgastScore(point.x + 1, point.y + 1, 1);
    float delta_x, delta_y;
    float max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x, delta_y);

    // store:
    keypoints.push_back(cv::KeyPoint(float(point.x) + delta_x, float(point.y) + delta_y, basicSize_, -1, max, 0));

    }

    return;
    }

    float x, y, scale, score;
    for (int i = 0; i < layers_; i++)
    {
    BriskLayer& l = pyramid_[i];
    const size_t num = agastPoints[i].size();
    if (i == layers_ - 1)
    {
    for (size_t n = 0; n < num; n++)
    {
    const cv::Point2f& point = agastPoints.at(i)[n].pt;
    // consider only 2D maxima...
    if (!isMax2D(i, (int)point.x, (int)point.y))
    continue;

    bool ismax;
    float dx, dy;
    getScoreMaxBelow(i, (int)point.x, (int)point.y, l.getAgastScore(point.x, point.y, safeThreshold_), ismax, dx, dy);
    if (!ismax)
    continue;

    // get the patch on this layer:
    int s_0_0 = l.getAgastScore(point.x - 1, point.y - 1, 1);
    int s_1_0 = l.getAgastScore(point.x, point.y - 1, 1);
    int s_2_0 = l.getAgastScore(point.x + 1, point.y - 1, 1);
    int s_2_1 = l.getAgastScore(point.x + 1, point.y, 1);
    int s_1_1 = l.getAgastScore(point.x, point.y, 1);
    int s_0_1 = l.getAgastScore(point.x - 1, point.y, 1);
    int s_0_2 = l.getAgastScore(point.x - 1, point.y + 1, 1);
    int s_1_2 = l.getAgastScore(point.x, point.y + 1, 1);
    int s_2_2 = l.getAgastScore(point.x + 1, point.y + 1, 1);
    float delta_x, delta_y;
    float max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x, delta_y);

    // store:
    keypoints.push_back(
    cv::KeyPoint((float(point.x) + delta_x) * l.scale() + l.offset(),
    (float(point.y) + delta_y) * l.scale() + l.offset(), basicSize_ * l.scale(), -1, max, i));
    }
    }
    else
    {
    // not the last layer:
    for (size_t n = 0; n < num; n++)
    {
    const cv::Point2f& point = agastPoints.at(i)[n].pt;

    // first check if it is a maximum:
    if (!isMax2D(i, (int)point.x, (int)point.y))
    continue;

    // let's do the subpixel and float scale refinement:
    bool ismax=false;
    score = refine3D(i, (int)point.x, (int)point.y, x, y, scale, ismax);
    if (!ismax)
    {
    continue;
    }

    // finally store the detected keypoint:
    if (score > float(threshold_))
    {
    keypoints.push_back(cv::KeyPoint(x, y, basicSize_ * scale, -1, score, i));
    }
    }
    }
    }
    }
    参考文献
    1、BRISK:binary robust invariant scalable keypoints,2011,ICCV.

    2、多种角度比较SIFT、SURF、RISK、ORB、FREAK算法[J],2014.

    3、基于颜色不变量的特征匹配算法研究[硕士论文],2014.
    ————————————————
    版权声明:本文为CSDN博主「hujingshuang」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/hujingshuang/article/details/47045497

  • 相关阅读:
    XCode下Swift – WebView IOS demo
    swift-初探webView与JS交互
    Swift 实践之UIWebView
    iOS 权限判断 跳转对应设置界面
    iOS~判断应用是否有定位权限
    iOS 判断是否有权限访问相机,相册
    UIAlertController中TextField的用法
    Swift-UITextField用法
    多年iOS开发经验总结(一)
    Python lambda和reduce函数
  • 原文地址:https://www.cnblogs.com/decode1234/p/12124415.html
Copyright © 2011-2022 走看看