环境:tensorflow2.2
使用tf.keras.Model.save保存saved_model格式时,默认的input和output比较通用,input_1, input2, output_1,output_2
自定义输入输出名字:
import tensorflow as tf
sigs = [tf.TensorSpec([None,8], tf.float32, name="a"),
tf.TensorSpec([None,8], tf.float32, name="b"),
tf.TensorSpec([None,8], tf.float32, name="c")]
class FullyConnectDnnModel(tf.keras.Model):
def __init__(self, name):
super().__init__(name=name)
self.h1 = tf.keras.layers.Dense(1024, activation='relu')
self.h2 = tf.keras.layers.Dense(512, activation='relu')
self.h3 = tf.keras.layers.Dense(256, activation='relu')
self.h4 = tf.keras.layers.Dense(128, activation='relu')
self.h5 = tf.keras.layers.Dense(1)
@tf.function(input_signature=[sigs])
def call(self, emb_layer_list):
emb_layers = tf.concat(emb_layer_list, axis=1)
layer1 = self.h1(emb_layers)
layer2 = self.h2(layer1)
layer3 = self.h3(layer2)
layer4 = self.h4(layer3)
logits = self.h5(layer4)
predict = tf.nn.sigmoid(logits)
return {"logits":logits, "predict": predict}
model = FullyConnectDnnModel("test")
emb_layer_list = []
for i in range(3):
emb_layer_list.append(tf.constant(1.0, shape=[4, 8]))
out = model(emb_layer_list)
model.save("./saved_model")
注意:
①call方法的输入是个list,那么input_signature的输入需要是个list[list[tf.TensorSpec]],如果输入是一个tensor,那么input_signature的输入是list[tf.TensorSpec],相当于input_signature必须是了list,list里面是什么需要和call的输入类型对齐.(测试发现tf.2.2版本,keras.Model下的call方法,Input_signature不能传dict,会报错)
②call方法可以返回dict,但是官方文档是这样写的.....有误导性:

后面saved_model的文档又是这样写的.....就很气....:
保存之后执行:
saved_model_cli show --dir=./saved_model --all

参考:
1.https://www.tensorflow.org/api_docs/python/tf/keras/Model
2.https://www.tensorflow.org/guide/saved_model?hl=zh-tw#specifying_signatures_during_export