zoukankan      html  css  js  c++  java
  • ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    http://www.cnblogs.com/denny402/p/5852983.html

    ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

     

    刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

    神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

    数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

    其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

    在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

    y 是我们预测的概率值, y' 是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

    完整代码如下:

    复制代码
    import tensorflow as tf
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    x = tf.placeholder(tf.float32, [None, 784])
    y_actual = tf.placeholder(tf.float32, shape=[None, 10])
    W = tf.Variable(tf.zeros([784,10]))        #初始化权值W
    b = tf.Variable(tf.zeros([10]))            #初始化偏置项b
    y_predict = tf.nn.softmax(tf.matmul(x,W) + b)     #加权变换并进行softmax回归,得到预测概率
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1))   #求交叉熵
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)   #用梯度下降法使得残差最小
    
    correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))   #在测试阶段,测试准确度计算
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))                #多个批次的准确度均值
    
    init = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init)
        for i in range(1000):               #训练阶段,迭代1000次
            batch_xs, batch_ys = mnist.train.next_batch(100)           #按批次训练,每批100行数据
            sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys})   #执行训练
            if(i%100==0):                  #每训练100次,测试一次
                print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})
    复制代码

    每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

    delphi lazarus opengl 网页操作自动化, 图像分析破解,游戏开发
  • 相关阅读:
    译:DOM2中的高级事件处理(转)
    Cookbook of QUnit
    URI编码解码和base64
    css截断长文本显示
    内置对象,原生对象和宿主对象
    HTML中的meta(转载)
    iframe编程的一些问题
    自动补全搜索实现
    new的探究
    深入instanceof
  • 原文地址:https://www.cnblogs.com/delphi-xe5/p/6985226.html
Copyright © 2011-2022 走看看