题意:
有一些木棍,每个有长度和重量,要求把这些木棍排成若干两个属性值均不下降的序列。问至少要分为多少个序列。且要保证排出来的子序列数最少。
思路:
( 9 , 4 ) ,( 2 , 5 ) ,( 1 , 2 ) ,( 5 , 3 ),( 4 , 1 )可以排成这样
( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ); ( 1 , 2 ) , ( 2 , 5 ) .
其中:(4,1)<=(5,3)<=(9,4)为不降序列,(4,1)<(5,3)由于4<5&&1<3
(1,2)<(2,5)为不降序列。即最少的不降子序列为2,输出2
#include<iostream> #include<algorithm> using namespace std; const int MAX = 5001; struct wooden{ int l, w, flag; }wd[MAX]; bool cmp(wooden x, wooden y){ if (x.l != y.l) return x.l < y.l; return x.w < y.w; } int main() { int T; cin >> T; while (T--) { int n; cin >> n; for (int i = 0; i < n; i++){ cin >> wd[i].l >> wd[i].w; wd[i].flag = 0; } sort(wd, wd + n, cmp); int res = 0; for (int i = 0; i < n; i++){ if (wd[i].flag)continue; res++; int cur = wd[i].w; for (int j = i + 1; j < n; j++){ if (!wd[j].flag && wd[j].w >= cur){ wd[j].flag = 1; cur = wd[j].w; } } } cout << res << endl; } return 0; }