题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2。以此类推,a与b之间有n头媒介牛,那么a,b的度为n+1。 给出m部电影,每一部给出牛的个数,和牛的编号。问那一头到其他每头牛的度数平均值最小,输出最小平均值乘100
思路:到所有牛的度数的平均值最小,也就是到所有牛的度数总和最小。那么就是找这头牛到其他每头牛的最小度,也就是最短路径,相加再除以(n-1)就是最小平均值。对于如何确定这头牛,我们可以用Floyd枚举,最后记录最下平均值即可。
#include<iostream> #include <algorithm> using namespace std; const int MAXN = 301; const int INF = 99999; int d[MAXN][MAXN], dis[MAXN], N, M; void solve() { int ans = INF; for (int k = 1; k <= N; k++){ for (int i = 1; i <= N; i++){ for (int j = 1; j <= N; j++){ d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } } } for (int i = 1; i <= N; i++){ for (int j = 1; j <= N; j++){ d[i][0] += d[i][j]; } d[i][0] = 100 * d[i][0] / (N - 1); ans = min(ans, d[i][0]); } cout << ans << endl; } int main() { while (cin >> N >> M) { for (int i = 1; i <= N; i++) for (int j = 1; j <= N; j++){ d[i][j] = INF; if (i == j) d[i][j] = 0; } for (int i = 1; i <= M; i++){ int num; cin >> num; for (int i = 1; i <= num; i++) cin >> dis[i]; for (int i = 1; i <= num; i++){ for (int j = i + 1; j <= num; j++){ d[dis[i]][dis[j]] = 1; d[dis[j]][dis[i]] = 1; } } } solve(); } return 0; }