zoukankan      html  css  js  c++  java
  • pytorch之 bulid_nn_with_2_method

     1 import torch
     2 import torch.nn.functional as F
     3 
     4 
     5 # replace following class code with an easy sequential network
     6 class Net(torch.nn.Module):
     7     def __init__(self, n_feature, n_hidden, n_output):
     8         super(Net, self).__init__()
     9         self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
    10         self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    11 
    12     def forward(self, x):
    13         x = F.relu(self.hidden(x))      # activation function for hidden layer
    14         x = self.predict(x)             # linear output
    15         return x
    16 
    17 net1 = Net(1, 10, 1)
    18 
    19 # easy and fast way to build your network
    20 net2 = torch.nn.Sequential(
    21     torch.nn.Linear(1, 10),
    22     torch.nn.ReLU(),
    23     torch.nn.Linear(10, 1)
    24 )
    25 
    26 
    27 print(net1)     # net1 architecture
    28 """
    29 Net (
    30   (hidden): Linear (1 -> 10)
    31   (predict): Linear (10 -> 1)
    32 )
    33 """
    34 
    35 print(net2)     # net2 architecture
    36 """
    37 Sequential (
    38   (0): Linear (1 -> 10)
    39   (1): ReLU ()
    40   (2): Linear (10 -> 1)
    41 )
    42 """
  • 相关阅读:
    Mysql事务隔离级
    51nod1076(tarjan)
    求无向图的割点和桥模板(tarjan)
    51nod1770(xjb)
    51nod1640(kruscal)
    51nod1639(组合数学)
    51nod1625(枚举&贪心)
    51nod1562(set&模拟)
    51nod1483(打表)
    51nod1475(贪心&枚举)
  • 原文地址:https://www.cnblogs.com/dhName/p/11742957.html
Copyright © 2011-2022 走看看