二、语言模型
之前讲过一次的语言模型,直接贴上链接便于复习。
https://www.cnblogs.com/dhName/p/11357774.html
三、CNN+RNN
这两个网络已经滚瓜烂熟了。
CNN通过距离为W的窗口不断进行卷积,之后再进行池化,最终对sentence进行语义表示。
RNN是将有序的文本有依赖的input到网络中。
这中间需要注意的是:CNN只是局部的语义卷积,并不能处理长依赖的问题。因此才出现了RNN
而RNN却容易出现梯度消失或爆炸的问题。之后才有了优化rnn的lstm
四、lstm+crf
lstm就是加了几个门的rnn。crf是条件随机场,在NN未火之前,也曾风靡一时。
这两个加在一起常用于解决序列标注的问题。比如ner、word segment等
现从原理的角度进行解释lstm+crf为什么做ner这么好。
转载:https://blog.csdn.net/qq_17677907/article/details/88096243
应用于ner的code(pytorch)
1 import torch 2 import torch.autograd as autograd 3 import torch.nn as nn 4 import torch.optim as optim 5 6 torch.manual_seed(1) 7 8 9 ####main.py 10 START_TAG = "<START>" 11 STOP_TAG = "<STOP>" 12 EMBEDDING_DIM = 5 13 HIDDEN_DIM = 4 14 15 # Make up some training data 16 training_data = [( 17 "the wall street journal reported today that apple corporation made money".split(), 18 "B I I I O O O B I O O".split() 19 ), ( 20 "georgia tech is a university in georgia".split(), 21 "B I O O O O B".split() 22 )] 23 24 word_to_ix = {} 25 for sentence, tags in training_data: 26 for word in sentence: 27 if word not in word_to_ix: 28 word_to_ix[word] = len(word_to_ix) 29 30 tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} 31 32 model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) 33 optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) 34 35 # Check predictions before training 36 with torch.no_grad(): 37 precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) 38 precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long) 39 print(model(precheck_sent)) 40 41 # Make sure prepare_sequence from earlier in the LSTM section is loaded 42 for epoch in range( 43 300): # again, normally you would NOT do 300 epochs, it is toy data 44 for sentence, tags in training_data: 45 # Step 1. Remember that Pytorch accumulates gradients. 46 # We need to clear them out before each instance 47 model.zero_grad() 48 49 # Step 2. Get our inputs ready for the network, that is, 50 # turn them into Tensors of word indices. 51 sentence_in = prepare_sequence(sentence, word_to_ix) 52 targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) 53 54 # Step 3. Run our forward pass. 55 loss = model.neg_log_likelihood(sentence_in, targets) 56 57 # Step 4. Compute the loss, gradients, and update the parameters by 58 # calling optimizer.step() 59 loss.backward() 60 optimizer.step() 61 62 # Check predictions after training 63 with torch.no_grad(): 64 precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) 65 print(model(precheck_sent)) 66 67 68 69 70 71 72 #####model.py 73 class BiLSTM_CRF(nn.Module): 74 75 def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): 76 super(BiLSTM_CRF, self).__init__() 77 self.embedding_dim = embedding_dim 78 self.hidden_dim = hidden_dim 79 self.vocab_size = vocab_size 80 self.tag_to_ix = tag_to_ix 81 self.tagset_size = len(tag_to_ix) 82 83 self.word_embeds = nn.Embedding(vocab_size, embedding_dim) 84 self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, 85 num_layers=1, bidirectional=True) 86 87 # Maps the output of the LSTM into tag space. 88 self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) 89 90 # Matrix of transition parameters. Entry i,j is the score of 91 # transitioning *to* i *from* j. 92 self.transitions = nn.Parameter( 93 torch.randn(self.tagset_size, self.tagset_size)) 94 95 # These two statements enforce the constraint that we never transfer 96 # to the start tag and we never transfer from the stop tag 97 self.transitions.data[tag_to_ix[START_TAG], :] = -10000 98 self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 99 100 self.hidden = self.init_hidden() 101 102 def init_hidden(self): 103 return (torch.randn(2, 1, self.hidden_dim // 2), 104 torch.randn(2, 1, self.hidden_dim // 2)) 105 106 def _forward_alg(self, feats): 107 # Do the forward algorithm to compute the partition function 108 init_alphas = torch.full((1, self.tagset_size), -10000.) 109 # START_TAG has all of the score. 110 init_alphas[0][self.tag_to_ix[START_TAG]] = 0. 111 112 # Wrap in a variable so that we will get automatic backprop 113 forward_var = init_alphas 114 115 # Iterate through the sentence 116 for feat in feats: 117 alphas_t = [] # The forward tensors at this timestep 118 for next_tag in range(self.tagset_size): 119 # broadcast the emission score: it is the same regardless of 120 # the previous tag 121 emit_score = feat[next_tag].view( 122 1, -1).expand(1, self.tagset_size) 123 # the ith entry of trans_score is the score of transitioning to 124 # next_tag from i 125 trans_score = self.transitions[next_tag].view(1, -1) 126 # The ith entry of next_tag_var is the value for the 127 # edge (i -> next_tag) before we do log-sum-exp 128 next_tag_var = forward_var + trans_score + emit_score 129 # The forward variable for this tag is log-sum-exp of all the 130 # scores. 131 alphas_t.append(log_sum_exp(next_tag_var).view(1)) 132 forward_var = torch.cat(alphas_t).view(1, -1) 133 terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] 134 alpha = log_sum_exp(terminal_var) 135 return alpha 136 137 def _get_lstm_features(self, sentence): 138 self.hidden = self.init_hidden() 139 embeds = self.word_embeds(sentence).view(len(sentence), 1, -1) 140 lstm_out, self.hidden = self.lstm(embeds, self.hidden) 141 lstm_out = lstm_out.view(len(sentence), self.hidden_dim) 142 lstm_feats = self.hidden2tag(lstm_out) 143 return lstm_feats 144 145 def _score_sentence(self, feats, tags): 146 # Gives the score of a provided tag sequence 147 score = torch.zeros(1) 148 tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) 149 for i, feat in enumerate(feats): 150 score = score + 151 self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] 152 score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] 153 return score 154 155 def _viterbi_decode(self, feats): 156 backpointers = [] 157 158 # Initialize the viterbi variables in log space 159 init_vvars = torch.full((1, self.tagset_size), -10000.) 160 init_vvars[0][self.tag_to_ix[START_TAG]] = 0 161 162 # forward_var at step i holds the viterbi variables for step i-1 163 forward_var = init_vvars 164 for feat in feats: 165 bptrs_t = [] # holds the backpointers for this step 166 viterbivars_t = [] # holds the viterbi variables for this step 167 168 for next_tag in range(self.tagset_size): 169 # next_tag_var[i] holds the viterbi variable for tag i at the 170 # previous step, plus the score of transitioning 171 # from tag i to next_tag. 172 # We don't include the emission scores here because the max 173 # does not depend on them (we add them in below) 174 next_tag_var = forward_var + self.transitions[next_tag] 175 best_tag_id = argmax(next_tag_var) 176 bptrs_t.append(best_tag_id) 177 viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) 178 # Now add in the emission scores, and assign forward_var to the set 179 # of viterbi variables we just computed 180 forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) 181 backpointers.append(bptrs_t) 182 183 # Transition to STOP_TAG 184 terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] 185 best_tag_id = argmax(terminal_var) 186 path_score = terminal_var[0][best_tag_id] 187 188 # Follow the back pointers to decode the best path. 189 best_path = [best_tag_id] 190 for bptrs_t in reversed(backpointers): 191 best_tag_id = bptrs_t[best_tag_id] 192 best_path.append(best_tag_id) 193 # Pop off the start tag (we dont want to return that to the caller) 194 start = best_path.pop() 195 assert start == self.tag_to_ix[START_TAG] # Sanity check 196 best_path.reverse() 197 return path_score, best_path 198 199 def neg_log_likelihood(self, sentence, tags): 200 feats = self._get_lstm_features(sentence) 201 forward_score = self._forward_alg(feats) 202 gold_score = self._score_sentence(feats, tags) 203 return forward_score - gold_score 204 205 def forward(self, sentence): # dont confuse this with _forward_alg above. 206 # Get the emission scores from the BiLSTM 207 lstm_feats = self._get_lstm_features(sentence) 208 209 # Find the best path, given the features. 210 score, tag_seq = self._viterbi_decode(lstm_feats) 211 return score, tag_seq 212 213 214 215 216 217 #####util 218 219 def argmax(vec): 220 # return the argmax as a python int 221 _, idx = torch.max(vec, 1) 222 return idx.item() 223 224 225 def prepare_sequence(seq, to_ix): 226 idxs = [to_ix[w] for w in seq] 227 return torch.tensor(idxs, dtype=torch.long) 228 229 230 # Compute log sum exp in a numerically stable way for the forward algorithm 231 def log_sum_exp(vec): 232 max_score = vec[0, argmax(vec)] 233 max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) 234 return max_score + 235 torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))