zoukankan      html  css  js  c++  java
  • 扩展Lucas定理

    我们首先来回顾一下Lucas定理:
    (inom{n}{m} = inom{lfloorfrac{n}{p} floor}{lfloorfrac{m}{p} floor}inom{n mod p}{m mod p}(mod p)(p is prime))

    其给出了在膜数为质数时,组合数取膜的优秀性质。
    其使用的地方为当 (n,m geq p)时。

    ll C(ll x,ll y){
    	if(y > x)return 0;
    	return s[x] * inv[y] % p * inv[x - y] % p;
    }
    
    inline ll Lucas(ll x,ll y){
    	if(y == 0)
    	return 1;
    	return Lucas(x / p,y / p) * C(x % p,y % p) % p;
    }
    
    inline void solve(){
    	s[0] = 1;
    	scanf("%lld%lld%lld",&n,&m,&p);
    	for(int i = 1;i <= p - 1;++i)
    	s[i] = s[i - 1] * i % p;
    	inv[p - 1] = pow(s[p - 1],p - 2);
    	for(int i = p - 2;i >= 0;--i)
    	inv[i] = inv[i + 1] * (i + 1) % p;
    	std::cout<<Lucas(n + m,n)<<std::endl;
    }
    

    那么我们自然思考当膜数并非质数的时候,我们有扩展Lucas来应对他。

    我们首先把 (p) 质数分解:
    (p = q_1^{alpha_1}q_2^{alpha_2}q_3^{alpha_3}....q_r^{alpha_r})

    Step1:

    那么我们就有若干个同余方程
    (left{ egin{aligned} a1equivinom{n}{m}pmod{q_1^{alpha_1}}\ a2equivinom{n}{m}pmod{q_2^{alpha_2}}\ a3equivinom{n}{m}pmod{q_3^{alpha_3}}\ .....\ a4equivinom{n}{m}pmod{q_r^{alpha_r}} end{aligned} ight.)

    那么依据中国剩余定理我们就能求出 (inom{n}{m})

    Step2:

    那么我们的问题转而求

    (inom{n}{m}mod q^k(q is prime))

    那么根据定义:
    我们有 (frac{n!}{m!(n - m)!}mod q^k)

    但是我们发现不一定有逆元。
    所以我们将原式转换为:

    (frac{frac{n!}{q^x}}{frac{m!}{q^y}frac{(n - m)!} {q^z}}q^{x-y-z}mod q^k)

    其中(x,y,z)表示在(n!)里的(p)的因子个数,其他类似。

    那么我们转为求 (frac{n!}{q^x}mod q^k)

    (n!)变形,则有:
    (n! = p^{lfloor frac{n}{p} floor}(lfloorfrac{n}{p} floor)(prodlimits_{i = 1,!(iequiv 0pmod{p})}{i}))
    显然后面这项拥有循环节。

    则有:(n! = p^{lfloor frac{n}{p} floor}(lfloorfrac{n}{p} floor)(prodlimits_{i = 1,!(iequiv 0pmod{p})}i)^{lfloorfrac{n}{p^k} floor}(prodlimits_{i = p^k{lfloorfrac{n}{p^k} floor},!(iequiv 0pmod{p})}i))

    定义:
    (f(n) = frac{n!}{p^x})

    所以(f(n) = f(lfloorfrac{n}{p} floor))(prodlimits_{i = 1,!(iequiv 0pmod{p})}i)^{lfloorfrac{n}{p^k} floor}(prodlimits_{i = p^k{lfloorfrac{n}{p^k} floor},!(iequiv 0pmod{p})}i))

    (g(n))(n!)(p)的因子个数:
    则有 (g(n) = lfloorfrac{n}{p} floor + g(lfloorfrac{n}{p} floor))

    所以答案为 (frac{f(n)}{f(m)f(n -m)}p^{g(n) - g(m) - g(n - m)}mod p^k)
    逆元扩展(exgcd)就行了。

    #include<iostream>
    #include<cstdio>
    #define ll long long 
    
    void exgcd(ll a,ll b,ll &x,ll &y){
        if (!b) return (void)(x=1,y=0);
        exgcd(b,a%b,x,y);
        ll tmp=x;x=y;y=tmp-a/b*y;
    }
    
    ll gcd(ll a,ll b){
    	if(b == 0)return a;
    	return gcd(b,a % b);
    }
    
    inline ll inv(ll a,ll p){
    	ll x,y;
    	exgcd(a,p,x,y);
    	return (x + p) % p;
    }
    
    inline ll lcm(ll a,ll b){
    	return a / gcd(a,b) * b;
    }
    
    inline ll fastpow(ll a,ll b,ll p){
    	ll ans = 1;
    	a %= p;
    	while(b){
    		if(b & 1)ans = (ans * a) % p;
    		b >>= 1;
    		a = (a * a) % p;
    	}
    	return ans;
    }
    
    inline ll read(){
    	ll ans = 0;
    	char a = getchar();
    	while(!(a <= '9' && a >= '0'))a = getchar();
    	while(a <= '9' && a >= '0')ans = (ans << 3) + (ans << 1) + (a - '0'),a = getchar();
    	return ans;
    }
    
    inline ll f(ll n,ll p,ll pk){
    	if(n == 0)return 1;
    	ll rou = 1;
    	ll res = 1;
    	for(ll i = 1;i <= pk;++i)
    	if(i % p)rou = rou * i % pk;
    	rou = fastpow(rou,n / pk,pk);
    	for(ll i = pk * (n / pk);i <= n;++i)
    	if(i % p)res = res * (i % pk) % pk;
    	return f(n / p,p,pk) * rou % pk * res % pk;
    }
    
    inline ll g(ll n,ll p){
    	if(n < p)return 0;
    	return g(n / p,p) + (n / p);
    }
    
    inline ll c_pk(ll n,ll m,ll p,ll pk){
    	ll fn = f(n,p,pk),fm = inv(f(m,p,pk),pk),fnm = inv(f(n - m,p,pk),pk);
    	ll mi = fastpow(p,g(n,p) - g(m,p) - g(n - m,p),pk);
    	return fn % pk * fm % pk * fnm % pk * mi % pk;
    }
    
    ll A[1001],B[1001];
    
    // x = B(mod A)
    
    inline ll exlucas(ll n,ll m,ll p){
    	ll P = p,tot = 0;
    	for(ll i = 2;i * i <= P;++i){
    		if(!(p % i)){
    			ll pk = 1;
    			while(!(p % i))
    			pk *= i,p /= i;
    			A[++tot] = pk;
    			B[tot] = c_pk(n,m,i,pk);
    		}
    	}
    	if(p != 1)
    	A[++tot] = p,B[tot] = c_pk(n,m,p,p);
    	ll ans = 0;
    	for(ll i = 1;i <= tot;++i){
    		ll M = P / A[i],t = inv(M,A[i]);
    		ans = (ans + B[i] * M % P * t % P) % P;
    	}
    	return ans;
    }
    
    int main(){
    	ll n = read(),m = read(),p = read();
    	std::cout<<exlucas(n,m,p)<<std::endl;
    }
    
  • 相关阅读:
    SQL SERVER 和EXCEL的数据导入导出
    常用SQL语句
    ASP.NET 中 ContentType 类型
    Centos7 安装MongoDB
    Scrapy:pipeline管道的open_spider、close_spider
    pipreqs(找当前项目依赖的包)
    Docker版本Jenkins的使用
    CentOS安装nginx,部署vue项目
    centos7中安装mysql
    flask框架使用flaskmigrate进行数据库的管理,非常方便!!!
  • 原文地址:https://www.cnblogs.com/dixiao/p/15243620.html
Copyright © 2011-2022 走看看