zoukankan      html  css  js  c++  java
  • UVA Where's Waldorf? 暴力string搜索

     

      Where's Waldorf?  
    
    Given a m by n grid of letters, ( ), and a list of words, find the location in the grid at which the word can be found. A word matches a straight, uninterrupted line of letters in the grid. A word can match the letters in the grid regardless of case (i.e. upper and lower case letters are to be treated as the same). The matching can be done in any of the eight directions either horizontally, vertically or diagonally through the grid. 
    Input  
    The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs. 
    
    The input begins with a pair of integers, m followed by n,  in decimal notation on a single line. The next m lines contain n letters each; this is the grid of letters in which the words of the list must be found. The letters in the grid may be in upper or lower case. Following the grid of letters, another integer k appears on a line by itself ( ). The next k lines of input contain the list of words to search for, one word per line. These words may contain upper and lower case letters only (no spaces, hyphens or other non-alphabetic characters). 
    
    Output  
    For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line. 
    
    For each word in the word list, a pair of integers representing the location of the corresponding word in the grid must be output. The integers must be separated by a single space. The first integer is the line in the grid where the first letter of the given word can be found (1 represents the topmost line in the grid, and m represents the bottommost line). The second integer is the column in the grid where the first letter of the given word can be found (1 represents the leftmost column in the grid, and n represents the rightmost column in the grid). If a word can be found more than once in the grid, then the location which is output should correspond to the uppermost occurence of the word (i.e. the occurence which places the first letter of the word closest to the top of the grid). If two or more words are uppermost, the output should correspond to the leftmost of these occurences. All words can be found at least once in the grid. 
    
    Sample Input  
    1
    
    8 11
    abcDEFGhigg
    hEbkWalDork
    FtyAwaldORm
    FtsimrLqsrc
    byoArBeDeyv
    Klcbqwikomk
    strEBGadhrb
    yUiqlxcnBjf
    4
    Waldorf
    Bambi
    Betty
    Dagbert
    
    Sample Output  
    2 5
    2 3
    1 2
    7 8
    
    
    #include <iostream> 
    #include <string> 
    #include <vector> 
    #include <algorithm> 
     
    using namespace std ; 
     
    string table[55] ; 
    string origin_table[55] ; 
    string words[25] ; 
    string origin_words[25] ; 
     
    struct Location { 
    	int x , y ; 	
    	Location(int x_pos , int y_pos):x(x_pos),y(y_pos) {		}	
    } ; 
     
    bool cmp(Location left , Location right) {  
     
    	if (origin_table[left.x][left.y] >= 'a' && origin_table[right.x][right.y] < 'a') { 
    		return false ; 
    	} 
    	else if (origin_table[left.x][left.y] < 'a' && origin_table[right.x][right.y] >= 'a') { 
    		return true ; 
    	} 
    	else {  
    		if (left.y < right.y) { 
    			return true ; 
    		} 
    		else 
    			return false ; 
    	} 
    } 
     
    vector<Location> locate ; 
     
    Location Lookup (size_t line_length , size_t cha_length , string word) { 
    	size_t i = 0 ; 
    	locate.clear() ; 
     
    	for (i = 0 ; i < line_length ; ++ i) { 
    		for (size_t j = 0 ; j < cha_length ; ++ j) { 
    			bool failed = false ;  
    			if (table[i][j] == word[0]) {  	
    				for (int k = 0 ; k < 8 ; ++ k) { 
    					if (k == 0) { 
    						failed = false ; 
    						if (j + word.length()-1 >= cha_length) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							 
    							if (table[i][j+count] != word[count]) {  
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 1) { 
    						failed = false ; 
    						if (j + word.length()-1 >= cha_length || i + word.length()-1 >= cha_length) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for(size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i+count][j+count] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 2) { 
    						failed = false ; 
    						if (i + word.length()-1 >= cha_length) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i+count][j] != word[count]) {  
    								failed = true ; 
    								break ; 
    							}  
    						}  
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 3) { 
    						failed = false ; 
    						if (j < word.length()-1 || i + word.length()-1 >= cha_length) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) {	 
    							if (table[i+count][j-count] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 4) { 
    						failed = false ; 
    						if (j < word.length()-1) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i][j-count] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 5) { 
    						failed = false ; 
    						if (i < word.length()-1 || j < word.length()-1) { 
    							failed = true ; 
    							continue ; 	
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i-count][j-count] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 6) { 
    						failed = false ; 
    						if (i < word.length()-1) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i-count][j] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    					if (k == 7) { 
    						failed = false ; 
    						if (i < word.length()-1 || j + word.length()-1 >= cha_length) { 
    							failed = true ; 
    							continue ; 
    						} 
    						for (size_t count = 1 ; count < word.length() ; ++ count) { 
    							if (table[i-count][j+count] != word[count]) { 
    								failed = true ; 
    								break ; 
    							} 
    						}  
    						
    						if (!failed) { 
    							break ; 
    						} 
    					} 
    				} 
    			} 
    			else { 
    				failed = true ; 
    			} 
    			if (!failed) { 
    				locate.push_back(Location(i,j)) ; 
    			} 
    		} 
    	} 
    	sort(locate.begin(),locate.end(),cmp) ;  
    	 
    	return *(locate.begin()) ; 
    } 
     
    int main() { 
    	size_t times , line_number , cha_number , word_number ; 
     
    	cin >> times ; 
     
    	while(times--) { 
    		cin >> line_number >> cha_number ; 
    		
    		for (size_t i = 0 ; i < line_number ; ++ i) { 
    			cin >> origin_table[i] ; 
    			table[i] = "" ; 
    			for (size_t j = 0 ; j < origin_table[i].length() ; ++ j) { 
    				if (origin_table[i][j] >= 'a') { 
    					table[i] += origin_table[i][j] - 32 ; 
    				} 
    				else { 
    					table[i] += origin_table[i][j] ; 
    				} 
    			} 
    		}
     
    		cin >> word_number ; 
    		for (size_t i = 0 ; i < word_number ; ++ i) { 
    			cin >> origin_words[i] ; 
    			words[i] = "" ; 
    			for (size_t j = 0 ; j < origin_words[i].length() ; ++ j) { 
    				if (origin_words[i][j] >= 'a') { 
    					words[i] += origin_words[i][j] - 32 ; 
    				} 
    				else { 
    					words[i] += origin_words[i][j] ; 
    				} 
    			} 
    		}   
    		 
    		for (size_t i = 0 ; i < word_number ; ++ i) { 
    			Location temp = Lookup(line_number,cha_number,words[i]) ; 
    			cout << temp.x+1 << " " << temp.y+1 << endl ; 
    		} 
    		if (times) { 
    			cout << endl ; 
    		} 
    	}  
     
    	return 0 ; 
    } 
     
  • 相关阅读:
    LeetCode First Bad Version (二分查找)
    LeetCode Permutations II (全排列)
    LeetCode Permutations (全排列)
    LeetCode Minimum Path Sum (简单DP)
    LeetCode Binary Tree Postorder Traversal(数据结构)
    LeetCode Sort Colors (技巧)
    邹忌
    参数传递
    父子窗体返回值与互操作
    其他数据库连接
  • 原文地址:https://www.cnblogs.com/diyingyun/p/2178721.html
Copyright © 2011-2022 走看看