zoukankan      html  css  js  c++  java
  • DESeq2包

    1)简介:

    DESeq2-package: for differential analysis of count data(对count data 做差异分析)

    2)安装

    if("DESeq2" %in% rownames(installed.packages()) == FALSE) {source("http://bioconductor.org/biocLite.R");biocLite("DESeq2")}
    suppressMessages(library(DESeq2))
    ls('package:DESeq2')
    

     3)对象的使用说明

    3.1)coef(Extract a matrix of model coefficients/standard errors,高级用户检验模型系数)

    语法:coef(object, SE = FALSE, ...)

    参数解释:

    object:a DESeqDataSet returned by DESeq, nbinomWaldTest, or nbinomLRT.

    例子:

    dds <- makeExampleDESeqDataSet(m=4)
    dds <- DESeq(dds)
    coef(dds)[1,]
    coef(dds, SE=TRUE)[1,]
    

     

    3.2) collapseReplicates:Collapse technical replicates in a RangedSummarizedExperiment or DESeqDataSet(用于消除技术重复)
    用法:collapseReplicates(object, groupby, run, renameCols = TRUE)
    参数:

    object:A RangedSummarizedExperiment or DESeqDataSet
    groupby:a grouping factor, as long as the columns of object,分组因子
    run:optional, the names of each unique column in object. if provided, a new column runsCollapsed will be added to the colData which pastes together the names of run (测序run)
    renameCols:whether to rename the columns of the returned object using the levels of the grouping factor

    例子:

    dds <- makeExampleDESeqDataSet(m=12)
    str(dds)
    dds$sample <- factor(sample(paste0("sample",rep(1:9, c(2,1,1,2,1,1,2,1,1))))) (#共9个样品:其中 3个样品有2个技术重重)
    dds$run <- paste0("run",1:12) #12个run道
    ddsColl <- collapseReplicates(dds, dds$sample, dds$run)
    # examine the colData and column names of the collapsed data
    colData(ddsColl)
    colnames(ddsColl)
    # check that the sum of the counts for "sample1" is the same
    # as the counts in the "sample1" column in ddsColl
    matchFirstLevel <- dds$sample == levels(dds$sample)[1]
    stopifnot(all(rowSums(counts(dds[,matchFirstLevel])) == counts(ddsColl[,1])))
    

     

    3.3)counts:Accessors for the ’counts’ slot of a DESeqDataSet object(对表达矩阵进行统计,)

    one row for each observational unit (gene or the like), and one column for each sample(行代表观察值(例如基因),列代表样本(例如肝、脾、肾等))

     语法:counts(object, normalized = FALSE,replaced = FALSE)

     参数:

    object:a DESeqDataSet object(表达矩阵).
    normalized:logical indicating whether or not to divide the counts by the size factors or normalization factors before returning (normalization factors always preempt size factors),(即不同量级的数据要不要归一化)
    replaced:返回极端值

    dds <- makeExampleDESeqDataSet(m=4)  ##构建一个表达矩阵
    head(counts(dds))
    dds <- estimateSizeFactors(dds) # run this or DESeq() first  
    head(counts(dds, normalized=TRUE))
    

     

    3.4)DESeq:Differential expression analysis based on the Negative Binomial (a.k.a.Gamma-Poisson) distribution(基于负二项分布进行差异分析)

    语法:

    DESeq(object, test = c("Wald", "LRT"), fitType = c("parametric", "local","mean"), sfType = c("ratio", "poscounts", "iterate"), betaPrior,full = design(object), reduced, quiet = FALSE,minReplicatesForReplace = 7, modelMatrixType, useT = FALSE, minmu = 0.5,
    parallel = FALSE, BPPARAM = bpparam())

    参数:

    object:a DESeqDataSet object(表达矩阵对象)
    test:Wald" or "LRT"检验
    fitType:either "parametric", "local", or "mean"
    sfType:either "ratio", "poscounts", or "iterate" for teh type of size factor estimation.
    betaPrior:whether or not to put a zero-mean normal prior on the non-intercept coefficients
    reduced:for test="LRT", a reduced formula to compare against
    quiet:whether to print messages at each step
    minReplicatesForReplace:the minimum number of replicates required
    modelMatrixType:either "standard" or "expanded", which describe how the model matrix, X of the GLM formula is formed.
    useT:logical, passed to nbinomWaldTest, default is FALSE
    minmu:lower bound on the estimated count for fitting gene-wise dispersion
    parallel:if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
    BPPARAM:an optional parameter object passed internally to bplapply when parallel=TRUE.
    例子:

    # count tables from RNA-Seq data
    cnts <- matrix(rnbinom(n=1000, mu=100, size=1/0.5), ncol=10)
    cond <- factor(rep(1:2, each=5))
    
    # object construction
    dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)
    
    # standard analysis
    dds <- DESeq(dds)
    res <- results(dds)
    
    # moderated log2 fold changes
    resultsNames(dds)
    resLFC <- lfcShrink(dds, coef=2, type="apeglm")
    
    # an alternate analysis: likelihood ratio test
    ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
    resLRT <- results(ddsLRT)
    

     

    3.5)DESeqDataSet-class(DESeqDataSet object and constructors)

     语法:

    DESeqDataSet(se, design, ignoreRank = FALSE)
    DESeqDataSetFromMatrix(countData, colData, design, tidy = FALSE,ignoreRank = FALSE, ...)
    DESeqDataSetFromHTSeqCount(sampleTable, directory = ".", design,ignoreRank = FALSE, ...)
    DESeqDataSetFromTximport(txi, colData, design, ...)

    例子:

    countData <- matrix(1:100,ncol=4)
    condition <- factor(c("A","A","B","B"))
    dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), ~ condition)
    

     3.6)DESeqResults-class:DESeqResults object and constructor

    语法:DESeqResults(DataFrame, priorInfo = list())

    参数:

    DataFrame:a DataFrame of results, standard column names are: baseMean, log2FoldChange,lfcSE, stat, pvalue, padj.
    priorInfo:a list giving information on the log fold change prior

    3.7)DESeqTransform-class(DESeqTransform object and constructor)

    语法:DESeqTransform(SummarizedExperiment)

    参数:SummarizedExperiment a RangedSummarizedExperiment

    3.8)rlog Apply a ’regularized log’ transformation

    用法:
    rlog(object, blind = TRUE, intercept, betaPriorVar, fitType = "parametric")
    rlogTransformation(object, blind = TRUE, intercept, betaPriorVar,fitType = "parametric")

    dds <- makeExampleDESeqDataSet(m=6,betaSD=1)
    rld <- rlog(dds)
    dists <- dist(t(assay(rld)))
    plot(hclust(dists))
    

     

    3.9)plotPCA(Sample PCA plot for transformed data)

    用法:plotPCA(object, intgroup = "condition",ntop = 500, returnData = FALSE)

    参数:

    object:a DESeqTransform object, with data in assay(x), produced for example by either rlog or varianceStabilizingTransformation.
    intgroup: interesting groups: a character vector of names in colData(x) to use for grouping
    ntop:number of top genes to use for principal components, selected by highest row variance
    returnData:should the function only return the data.frame of PC1 and PC2 with intgroup covariates for custom plotting

    # using rlog transformed data:
    dds <- makeExampleDESeqDataSet(betaSD=1)
    rld <- rlog(dds)
    plotPCA(rld)
    
    # also possible to perform custom transformation:
    dds <- estimateSizeFactors(dds)
    # shifted log of normalized counts
    se <- SummarizedExperiment(log2(counts(dds, normalized=TRUE) + 1),
    colData=colData(dds))
    # the call to DESeqTransform() is needed to
    # trigger our plotPCA method.
    plotPCA( DESeqTransform( se ) )
    

     

    3.10)

  • 相关阅读:
    [codevs2800]送外卖
    python JSON处理
    python系统编码格式
    python,django,mysql版本号查询
    django开发总结:
    python之---类和实例
    django Q和F查询
    合并多个python list以及合并多个 django QuerySet 的方法
    python学习之---匿名函数,返回函数,偏函数
    python学习之---生成器
  • 原文地址:https://www.cnblogs.com/djx571/p/9641789.html
Copyright © 2011-2022 走看看