zoukankan      html  css  js  c++  java
  • 微软黑科技强力注入,.NET C#全面支持人工智能

    微软黑科技强力注入,.NET C#全面支持人工智能,AI编程领域开始C#、Py……百花齐放

    就像武侠小说中,一个普通人突然得到绝世高手的几十年内力注入,招式还没学,一身内力有点方

    Introducing ML.NET: Cross-platform, Proven and Open Source Machine Learning Framework

    https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/

    微软 正式开源 C#人工智能框架:https://github.com/dotnet/machinelearning

    Open-Source Machine Learning in Azure

    Today at //Build 2018, we are excited to announce the preview of ML.NET, a cross-platform, open source machine learning framework. ML.NET will allow .NET developers to develop their own models and infuse custom ML into their applications without prior expertise in developing or tuning machine learning models.

    ML.NET was originally developed in Microsoft Research and evolved into a significant framework over the last decade; it is used across many product groups in Microsoft like Windows, Bing, Azure, and more .

    With this first preview release, ML.NET enables ML tasks like classification (e.g. text categorization and sentiment analysis) and regression (e.g. forecasting and price prediction). Along with these ML capabilities, this first release of ML.NET also brings the first draft of .NET APIs for training models, using models for predictions, as well as the core components of this framework, such as learning algorithms, transforms, and core ML data structures.

    ML.NET is first and foremost a framework, which means that it can be extended to add popular ML Libraries like TensorFlow, Accord.NET, and CNTK. We are committed to bringing the full experience of ML.NET’s internal capabilities to ML.NET in open source.

    To sum it all up, ML.NET is our commitment to make ML great in .NET.

    The table below describes the entire list of components that are being released as a part of ML.NET 0.1.

    We aim to make ML.NET’s APIs generic, such that other frameworks like CNTK, Accord.NET, TensorFlow and other libraries can become usable through one shared API.

    Over time, ML.NET will enable other ML scenarios like recommendation systems, anomaly detection, and other approaches, like deep learning, by leveraging popular deep learning libraries like TensorFlow, Caffe2, and CNTK, and general machine learning libraries like Accord.NET.

    ML.NET also complements the experience that Azure Machine Learning and Cognitive Services provides by allowing for a code-first approach, supports app-local deployment and the ability to build your own models.

    The rest of this blog post provides more details about ML.NET; feel free to jump to the one that interests you the most.

    以上转载自微软官方博客:

    https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/

    ------------------------------------------ 

    首届.NET Core开源峰会

    • 代号:dnc 2018
    • 亮点:去中心化、社区驱动 开源峰会
    • 时间:2018年5月20日 周日
    • 地点:在线峰会、远程参与
    • 官网:dncNew.com
    • 形式:每个主题5分钟-15分钟闪电演讲 
    • dnc开源峰会直播QQ群 779699538 申请加入群的步骤
    • dnc开源峰会直播微信群 申请加入群的步骤
  • 相关阅读:
    hdu 4258 Covered Walkway
    hdu 2337 Escape from Enemy Territory
    二分查找
    hdu 2335 Containers
    最大流 Dinic
    进程和并发编程
    黏包
    socket
    网络编程
    异常处理
  • 原文地址:https://www.cnblogs.com/dncNew/p/dncAI.html
Copyright © 2011-2022 走看看