zoukankan      html  css  js  c++  java
  • Python版常见的排序算法

    学习笔记

    排序算法

    image-20200818174707409

    排序分为两类,比较类排序和非比较类排序,比较类排序通过比较来决定元素间的相对次序,其时间复杂度不能突破O(nlogn);非比较类排序可以突破基于比较排序的时间下界,缺点就是一般只能用于整型相关的数据类型,需要辅助的额外空间。

    要求能够手写时间复杂度位O(nlogn)的排序算法:快速排序、归并排序、堆排序

    1.冒泡排序

    思想:相邻的两个数字进行比较,大的向下沉,最后一个元素是最大的。列表右边先有序。

    时间复杂度$O(n^2)$,原地排序,稳定的

    def bubble_sort(li:list):
        for i in range(len(li)-1):
            for j in range(i + 1, len(li)):
                if li[i] > li[j]:
                    li[i], li[j] = li[j], li[i]
    
    2.选择排序

    思想:首先找到最小元素,放到排序序列的起始位置,然后再从剩余元素中继续寻找最小元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。列表左边先有序。

    时间复杂度$O(n^2)$,原地排序,不稳定

    def select_sort(nums: list):
        for i in range(len(nums) - 1):
            min_index = i
            for j in range(i + 1, len(nums)):
                if nums[j] < nums[i]:
                    min_index = j
            nums[i], nums[min_index] = nums[min_index], nums[i]  
    
    3.插入排序

    思想:构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。列表左边先有序。

    时间复杂度$O(n^2)$,原地排序,稳定

    def insert_sort(nums: list):
        for i in range(len(nums)):
            current = nums[i]
            pre_index = i - 1
            while pre_index >= 0 and nums[pre_index] > current:
                nums[pre_index + 1] = nums[pre_index]
                pre_index -= 1
            nums[pre_index + 1] = current
    
    4.希尔排序

    思想:插入排序的改进版,又称缩小增量排序,将待排序的列表按下标的一定增量分组,每组分别进行直接插入排序,增量逐渐减小,直到为1,排序完成

    时间复杂度$O(n^{1.5})$,原地排序,不稳定

    def shell_sort(nums: list):
        gap = len(nums) >> 1
        while gap > 0:
            for i in range(gap, len(nums)):
                current = nums[i]
                pre_index = i - gap
                while pre_index >= 0 and nums[pre_index] > current:
                    nums[pre_index + gap] = nums[pre_index]
                    pre_index -= gap
                nums[pre_index + gap] = current
            gap >>= 1
    
    5.快速排序

    思想:递归,列表中取出第一个元素,作为标准,把比第一个元素小的都放在左侧,把比第一个元素大的都放在右侧,递归完成时就是排序结束的时候

    时间复杂度$O(nlogn)$,空间复杂度$O(logn)$,不稳定

    def quick_sort(li:list):
        if li == []:
            return []
        first = li[0]
        # 推导式实现
        left = quick_sort([l for l in li[1:] if l < first])
        right = quick_sort([r for r in li[1:] if r >= first])
        return left + [first] + right
    
    6.归并排序

    思想:分治算法,拆分成子序列,使用归并排序,将排序好的子序列合并成一个最终的排序序列。关键在于怎么合并:设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放到合并空间,并将该指针移到下一位置,直到某一指针超出序列尾,将另一序列所剩下的所有元素直接复制到合并序列尾。

    时间复杂度$O(nlogn)$,空间复杂度O(n),不稳定

    二路归并

    def merge_sort(nums: list):
        if len(nums) <= 1:
            return nums
        mid = len(nums) >> 1
        left = merge_sort(nums[:mid])  # 拆分子问题
        right = merge_sort(nums[mid:])
    
        def merge(left, right):  # 如何归并
            res = []
            l, r = 0, 0
            while l < len(left) and r < len(right):
                if left[l] <= right[r]:
                    res.append(left[l])
                    l += 1
                else:
                    res.append(right[r])
                    r += 1
            res += left[l:]
            res += right[r:]
            return res
    
        return merge(left, right)
    
    7.堆排序

    思想:根节点最大,大顶堆,对应升序,根节点最小,小顶堆。

    • 构建大根堆,完全二叉树结构,初始无序
    • 最大堆调整,进行堆排序。将堆顶元素与最后一个元素交换,此时后面有序

    时间复杂度$O(nlogn)$,原地排序,稳定

    def heap_sort(nums: list):
        def heapify(parent_index, length, nums):
            temp = nums[parent_index]  # 根节点的值
            chile_index = 2 * parent_index + 1  # 左节点,再加一为右节点
            while chile_index < length:
                if chile_index + 1 < length and nums[chile_index + 1] > nums[chile_index]:
                    chile_index = chile_index + 1
                if temp > nums[chile_index]:
                    break
                nums[parent_index] = nums[chile_index]  # 使得根节点最大
                parent_index = chile_index
                chile_index = 2 * parent_index + 1
            nums[parent_index] = temp
    
        for i in range((len(nums) - 2) >> 1, -1, -1):
            heapify(i, len(nums), nums)  # 1.建立大根堆
        for j in range(len(nums) - 1, 0, -1):
            nums[j], nums[0] = nums[0], nums[j]
            heapify(0, j, nums)  # 2.堆排序,为升序
            
    if __name__ == '__main__':
        nums = [89,  3, 3, 2, 5, 45, 33, 67]  # [2, 3, 3, 5, 33, 45, 67, 89]
        heap_sort(nums)
        print(nums)       
    
  • 相关阅读:
    C# 在RichTextBox根据内容自动调整高度
    C# TabControl 隐藏标签头(TabControl Hide Head)
    SQL Server Profiler的简单使用
    Entity Framework Code First 在Object Join Linq查询时出现全表查询的语句。
    传统if 从句子——以条件表达式作为if条件
    正向行为方法---解决问题
    Shell的特殊字符
    精进:如何成为一个很厉害的人---思维导图
    Linux下用于查看系统当前登录用户信息的4种方法
    有用户及目录判断的删除文件内容的Shell脚本
  • 原文地址:https://www.cnblogs.com/donghe123/p/13528332.html
Copyright © 2011-2022 走看看