zoukankan      html  css  js  c++  java
  • uva10112

    题目就是给出一些点,求哪一个三角形不包含其他点且面积最大。题目中也给出了一个计算面积的公式。

    要注意的是判断double类型面积相等注意精度问题。写的时候忘记了给面积加绝对值

    题目:

    Problem B: Myacm Triangles

    Source file: triangle.{c, cpp, java, pas}
    Input file: triangle.in
    Output file: triangle.out

    There has been considerable archeological work on the ancient Myacm culture. Many artifacts have been found in what have been called power fields: a fairly small area, less than 100 meters square where there are from four to fifteen tall monuments with crystals on top. Such an area is mapped out above. Most of the artifacts discovered have come from inside a triangular area between just three of the monuments, now called the power triangle. After considerable analysis archeologists agree how this triangle is selected from all the triangles with three monuments as vertices: it is the triangle with the largest possible area that does not contain any other monuments inside the triangle or on an edge of the triangle. Each field contains only one such triangle.

    Archeological teams are continuing to find more power fields. They would like to automate the task of locating the power triangles in power fields. Write a program that takes the positions of the monuments in any number of power fields as input and determines the power triangle for each power field.

    A useful formula: the area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) is the absolute value of

    0.5 × [(y3 - y1)(x2 - x1) - (y2 - y1)(x3 - x1)].

    For each power field there are several lines of data. The first line is the number of monuments: at least 4, and at most 15. For each monument there is a data line that starts with a one character label for the monument and is followed by the coordinates of the monument, which are nonnegative integers less than 100. The first label is A, and the next is B, and so on.

    There is at least one such power field described. The end of input is indicated by a 0 for the number of monuments. The first sample data below corresponds to the diagram in the problem.

    For each power field there is one line of output. It contains the three labels of the vertices of the power triangle, listed in increasing alphabetical order, with no spaces.

    Example input:

    6
    A 1 0
    B 4 0
    C 0 3
    D 1 3
    E 4 4
    F 0 6
    4
    A 0 0
    B 1 0
    C 99 0
    D 99 99
    0
    

    Example output:

    BEF
    BCD

    代码:
     1 #include <iostream>
     2 #include <math.h>
     3 using namespace std;
     4 const int maxn =30;
     5 char P[maxn];
     6 int x[maxn];
     7 int y[maxn];
     8 int N;
     9 
    10 double area(double ax,double ay,double bx,double by,double cx,double cy)
    11 {
    12     //0.5 ¡Á [(y3 - y1)(x2 - x1) - (y2 - y1)(x3 - x1)].
    13     double ans ;
    14     ans = 0.5 * ((cy-ay)*(bx-ax)-(by-ay)*(cx-ax));
    15     ans = ans<0?-ans:ans;
    16     return ans;
    17 }
    18 bool check(int o,int a,int b,int c,double  abc)
    19 {
    20     double x1 = area(x[o],y[o],x[a],y[a],x[b],y[b]);
    21     double x2 = area(x[o],y[o],x[a],y[a],x[c],y[c]);
    22     double x3 = area(x[o],y[o],x[b],y[b],x[c],y[c]);
    23     if(  fabs(abc-x1-x2-x3)<1e-9 )return true;              //ÔÚÔ²ÄÚ
    24     else return false;
    25 }
    26 
    27 int ansa,ansb,ansc,ansmax;
    28 void solve()
    29 {
    30     ansmax=0;
    31     for(int i=0;i<N;i++)
    32     {
    33         for(int j=i+1;j<N;j++)
    34         {
    35             for(int k=j+1;k<N;k++)
    36             {
    37                 int flag=1;
    38                 double s =  area(x[i],y[i],x[j],y[j],x[k],y[k]);
    39 
    40                 for(int m =0;m<N;m++)
    41                 {
    42                     if(m==i||m==j||m==k)continue;
    43                 //    cout<<i<<" "<<j<<" "<<k<<endl;
    44                     if(check(m,i,j,k,s))
    45                     {
    46                         flag=0;
    47                         break;
    48                     }
    49                 }
    50                 if(flag)
    51                 {
    52                     if(s>ansmax)
    53                     {
    54                         ansa = i; ansb=j;ansc=k;
    55                         ansmax =s;
    56                    //     cout<<ansa<<" "<<ansb<<" "<<ansc<<endl;
    57                     }
    58                 }
    59                 else
    60                     flag=1;
    61             }
    62         }
    63     }
    64 }
    65 
    66 
    67 
    68 int main()
    69 {
    70 
    71     while(cin>>N && N)
    72     {
    73         ansa=ansb=ansc=ansmax=0;
    74         for(int i=0;i<N;i++)
    75         {
    76             cin>>P[i];
    77             cin>>x[i]>>y[i];
    78         }
    79         solve();
    80         //cout<<ansa<<ansb<<ansc<<endl;
    81         cout<<P[ansa]<<P[ansb]<<P[ansc]<<endl;
    82     }
    83 
    84 
    85 
    86     return 0;
    87 }
  • 相关阅读:
    POJ 1611 The Suspects(并查集)
    POJ 2485 Highways(最小生成树Prim算法)
    POJ 1062 昂贵的聘礼(最短路径Dijkstr的变形)
    SDUT 2374 || HDU 1803Cylinder(计算几何求体积)
    HDU 1804 || SDUT 2375 Deli Deli(简单题)
    POJ 3041 Asteroids(二分图的最大匹配)
    HDU 1802 || SDUT 2373 Black and white painting(规律)
    POJ 1035 Spell checker(字符串简单匹配)
    POJ 3080 Blue Jeans(KMP模式匹配)
    js中反斜杠\的一些研究
  • 原文地址:https://www.cnblogs.com/doubleshik/p/3434867.html
Copyright © 2011-2022 走看看