zoukankan      html  css  js  c++  java
  • Neural Networks and Deep Learning(week4)Building your Deep Neural Network: Step by Step

    Building your Deep Neural Network: Step by Step

    • 你将使用下面函数来构建一个深层神经网络来实现图像分类。
    • 使用像relu这的非线性单元来改进你的模型
    • 构建一个多隐藏层的神经网络(有超过一个隐藏层)

    符号说明:

    1 - Packages(导入的包)

    • numpy:进行科学计算的包
    • matplotlib :绘图包
    • dnn_utils:提供一些必要功能
    • testCases 提供一些测试用例来评估函数的正确性
    • np.random.seed(1) 设置随机数种子,易于测试。
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    from testCases_v2 import *
    from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
    
    %matplotlib inline
    plt.rcParams['figure.figsize'] = (5.0, 4.0) # 设置最大图像大小
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    %load_ext autoreload
    %autoreload 2
    
    np.random.seed(1)

    保存在本地

    # TODO: 保存在dnn_utils.py 
    import numpy as np
    
    def sigmoid(Z):
        """
        Implements the sigmoid activation in numpy
    
        Arguments:
        Z -- numpy array of any shape
    
        Returns:
        A -- output of sigmoid(z), same shape as Z
        cache -- returns Z as well, useful during backpropagation
        """
    
        A = 1/(1+np.exp(-Z))
        cache = Z
    
        return A, cache
    
    def relu(Z):
        """
        Implement the RELU function.
    
        Arguments:
        Z -- Output of the linear layer, of any shape
    
        Returns:
        A -- Post-activation parameter, of the same shape as Z
        cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
        """
    
        A = np.maximum(0,Z)
    
        assert(A.shape == Z.shape)
    
        cache = Z 
        return A, cache
    
    
    def relu_backward(dA, cache):
        """
        Implement the backward propagation for a single RELU unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object.
    
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    def sigmoid_backward(dA, cache):
        """
        Implement the backward propagation for a single SIGMOID unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
    
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    # TODO: testCases.py
    import numpy as np
    
    def linear_forward_test_case():
        np.random.seed(1)
        """
        X = np.array([[-1.02387576, 1.12397796],
     [-1.62328545, 0.64667545],
     [-1.74314104, -0.59664964]])
        W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
        b = np.array([[1]])
        """
        A = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
    
        return A, W, b
    
    def linear_activation_forward_test_case():
        """
        X = np.array([[-1.02387576, 1.12397796],
     [-1.62328545, 0.64667545],
     [-1.74314104, -0.59664964]])
        W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
        b = 5
        """
        np.random.seed(2)
        A_prev = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        return A_prev, W, b
    
    def L_model_forward_test_case():
        """
        X = np.array([[-1.02387576, 1.12397796],
     [-1.62328545, 0.64667545],
     [-1.74314104, -0.59664964]])
        parameters = {'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175],
            [-1.07296862,  0.86540763, -2.3015387 ]]),
     'W2': np.array([[ 1.74481176, -0.7612069 ]]),
     'b1': np.array([[ 0.],
            [ 0.]]),
     'b2': np.array([[ 0.]])}
        """
        np.random.seed(1)
        X = np.random.randn(4,2)
        W1 = np.random.randn(3,4)
        b1 = np.random.randn(3,1)
        W2 = np.random.randn(1,3)
        b2 = np.random.randn(1,1)
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return X, parameters
    
    def compute_cost_test_case():
        Y = np.asarray([[1, 1, 1]])
        aL = np.array([[.8,.9,0.4]])
    
        return Y, aL
    
    def linear_backward_test_case():
        """
        z, linear_cache = (np.array([[-0.8019545 ,  3.85763489]]), (np.array([[-1.02387576,  1.12397796],
           [-1.62328545,  0.64667545],
           [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), np.array([[1]]))
        """
        np.random.seed(1)
        dZ = np.random.randn(1,2)
        A = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        linear_cache = (A, W, b)
        return dZ, linear_cache
    
    def linear_activation_backward_test_case():
        """
        aL, linear_activation_cache = (np.array([[ 3.1980455 ,  7.85763489]]), ((np.array([[-1.02387576,  1.12397796], [-1.62328545,  0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), 5), np.array([[ 3.1980455 ,  7.85763489]])))
        """
        np.random.seed(2)
        dA = np.random.randn(1,2)
        A = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        Z = np.random.randn(1,2)
        linear_cache = (A, W, b)
        activation_cache = Z
        linear_activation_cache = (linear_cache, activation_cache)
    
        return dA, linear_activation_cache
    
    def L_model_backward_test_case():
        """
        X = np.random.rand(3,2)
        Y = np.array([[1, 1]])
        parameters = {'W1': np.array([[ 1.78862847,  0.43650985,  0.09649747]]), 'b1': np.array([[ 0.]])}
    
        aL, caches = (np.array([[ 0.60298372,  0.87182628]]), [((np.array([[ 0.20445225,  0.87811744],
               [ 0.02738759,  0.67046751],
               [ 0.4173048 ,  0.55868983]]),
        np.array([[ 1.78862847,  0.43650985,  0.09649747]]),
        np.array([[ 0.]])),
       np.array([[ 0.41791293,  1.91720367]]))])
       """
        np.random.seed(3)
        AL = np.random.randn(1, 2)
        Y = np.array([[1, 0]])
    
        A1 = np.random.randn(4,2)
        W1 = np.random.randn(3,4)
        b1 = np.random.randn(3,1)
        Z1 = np.random.randn(3,2)
        linear_cache_activation_1 = ((A1, W1, b1), Z1)
    
        A2 = np.random.randn(3,2)
        W2 = np.random.randn(1,3)
        b2 = np.random.randn(1,1)
        Z2 = np.random.randn(1,2)
        linear_cache_activation_2 = ( (A2, W2, b2), Z2)
    
        caches = (linear_cache_activation_1, linear_cache_activation_2)
    
        return AL, Y, caches
    
    def update_parameters_test_case():
        """
        parameters = {'W1': np.array([[ 1.78862847,  0.43650985,  0.09649747],
            [-1.8634927 , -0.2773882 , -0.35475898],
            [-0.08274148, -0.62700068, -0.04381817],
            [-0.47721803, -1.31386475,  0.88462238]]),
     'W2': np.array([[ 0.88131804,  1.70957306,  0.05003364, -0.40467741],
            [-0.54535995, -1.54647732,  0.98236743, -1.10106763],
            [-1.18504653, -0.2056499 ,  1.48614836,  0.23671627]]),
     'W3': np.array([[-1.02378514, -0.7129932 ,  0.62524497],
            [-0.16051336, -0.76883635, -0.23003072]]),
     'b1': np.array([[ 0.],
            [ 0.],
            [ 0.],
            [ 0.]]),
     'b2': np.array([[ 0.],
            [ 0.],
            [ 0.]]),
     'b3': np.array([[ 0.],
            [ 0.]])}
        grads = {'dW1': np.array([[ 0.63070583,  0.66482653,  0.18308507],
            [ 0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ]]),
     'dW2': np.array([[ 1.62934255,  0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ,  0.        ]]),
     'dW3': np.array([[-1.40260776,  0.        ,  0.        ]]),
     'da1': np.array([[ 0.70760786,  0.65063504],
            [ 0.17268975,  0.15878569],
            [ 0.03817582,  0.03510211]]),
     'da2': np.array([[ 0.39561478,  0.36376198],
            [ 0.7674101 ,  0.70562233],
            [ 0.0224596 ,  0.02065127],
            [-0.18165561, -0.16702967]]),
     'da3': np.array([[ 0.44888991,  0.41274769],
            [ 0.31261975,  0.28744927],
            [-0.27414557, -0.25207283]]),
     'db1': 0.75937676204411464,
     'db2': 0.86163759922811056,
     'db3': -0.84161956022334572}
        """
        np.random.seed(2)
        W1 = np.random.randn(3,4)
        b1 = np.random.randn(3,1)
        W2 = np.random.randn(1,3)
        b2 = np.random.randn(1,1)
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        np.random.seed(3)
        dW1 = np.random.randn(3,4)
        db1 = np.random.randn(3,1)
        dW2 = np.random.randn(1,3)
        db2 = np.random.randn(1,1)
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
    
        return parameters, grads

    2 - 任务概要

    • 双隐藏层 和 L层神经网络 的 参数初始化

    • 实现前向传播操作(forward propagation) 。计算 损失函数。

      • 完成 层的 前向传播 的 线性部分。(计算出 Z = WX + b) 。

      • 使用 relusigmod 激活函数计算结果值。

      • 将前两个步骤组合成一个新的前向函数(线性->激活) [LINEAR->ACTIVATION] 

      • 对输出层之前的 L-1 层,做 L-1 次 前向传播 [LINEAR->RELU] ,L层输出层的 激活函数sigmod

    • 计算损失函数(loss fun)

    • 实现 后向传播操作 模块(在下图中用红色表示)。最后更新参数。

      • 计算神经网络 反向传播的 LINEAR 部分。

      • 计算 激活函数 (Relu 或者 sigmod)的 梯度

      • 综合前两个步骤,产生一个新的后向函数【Liner --> Activation】

    • 更新参数

    注意,前向函数和反向函数相对应。前向传播的每一步都将反向传播用的到值存储在cache。cache中值对于计算梯度非常有用。

    3 - Initialization(初始化)

    为你的模型编写函数初始化参数。第一个函数将用于 初始化两层模型 的参数。第二个函数用于 初始化 L层模型 的参数。

    3.1 - 2-layer Neural Network (双隐藏层神经网络)

    Exercise: 创建和初始化 2层神经网络 的参数.

    Instructions:

    • 模型结果: LINEAR -> RELU -> LINEAR -> SIGMOID.
    • 使用 随机初始化 权重矩阵。用 np.random.randn(shape)*0.01 用正确的shape。
    • 使用 0 初始化偏差。用 np.zeros(shape)
    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        parameters -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(1)
        
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h, n_x)*0.01
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h)*0.01
        b2 = np.zeros((n_y, 1))
        ### END CODE HERE ###
        
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters    
    parameters = initialize_parameters(3,2,1)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    W1 = [[ 0.01624345 -0.00611756 -0.00528172]
     [-0.01072969  0.00865408 -0.02301539]]
    b1 = [[ 0.]
     [ 0.]]
    W2 = [[ 0.01744812 -0.00761207]]
    b2 = [[ 0.]]

    Expected output:

    W1 [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]]
    b1 [[ 0.] [ 0.]]
    W2 [[ 0.01744812 -0.00761207]]
    b2 [[ 0.]]

    3.2 - L-layer Neural Network(L-层隐藏层神经网络)

    当完成 initialize_parameters_deep 时,你应该确保每个层之间的维度匹配。n^l 是 L层中单位数。如,输入X,size = (12288, 209)(有m=209个样本):

    Exercise: 实现 L层神经网络的 初始化。

    Instructions:

    • 模型结构:[LINEAR -> RELU] × (L-1) --> LINEAR -> SIGMOID. , 所以 L-1 层是需要用 ReLu激活函数,输出层是用 sigmod函数。
    • 权重矩阵采用 随机初始化的 方式:用 np.random.randn(shape) * 0.01.
    • 偏移矩阵仍是 0 矩阵进行初始化:用 np.zeros(shape).
    • 我们将每层神经元数量信息进行存储,layer_dims。例如,在平面数据分类模型中 layer_dims 的值是 [2, 4, 1]
      • 其中 输入层的神经元个数是2,一个隐藏层的神经元个数是 4,输出层的神经元个数是1。
      • 对应 W1.shape = (4, 2),  b1.shape = (4, 1), W2.shape = (1, 4),  b2.shape = (1, 1)。
    • 下面是实现 L=1 层神经网络:
      if L == 1:
          parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
          parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
    • L 层神经网络实现方式(参数初始化):
    # GRADED FUNCTION: initialize_parameters_deep
    
    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
        
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
        
        np.random.seed(3)
        parameters = {}
        L = len(layer_dims)            # number of layers in the network
    
        for l in range(1, L):
            ### START CODE HERE ### (≈ 2 lines of code)
            parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
            parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
            ### END CODE HERE ###
            
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
            
        return parameters
    parameters = initialize_parameters_deep([5,4,3])
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    Expected output:

    W1 [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
    b1 [[ 0.] [ 0.] [ 0.] [ 0.]]
    W2 [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
    b2 [[ 0.] [ 0.] [ 0.]]

    4 - Forward propagation module(前向传播模型)

    三个部分:

    • 实现线性函数  (Z = np.dot(W, A) + b)

    • 使用激励函数(Relu or Sigmod)

    • 应用到整个模型

    4.1 - Linear Forward

    前向传播的过程,先计算如下的线性部分:。其中,

    Exercise: 建立前向传播的线性部分。

    # GRADED FUNCTION: linear_forward
    
    def linear_forward(A, W, b):
        """
        Implement the linear part of a layer's forward propagation.
    
        Arguments:
        A -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
    
        Returns:
        Z -- the input of the activation function, also called pre-activation parameter 
        cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        Z = np.dot(W, A) + b
        
    #     print("W: ", W.shape)
    #     print("A: ", A.shape)
    #     print("b: ", b.shape)
        ### END CODE HERE ###
        
        assert(Z.shape == (W.shape[0], A.shape[1]))
        cache = (A, W, b)
        
        return Z, cache
    A, W, b = linear_forward_test_case()
    
    Z, linear_cache = linear_forward(A, W, b)
    print("Z = " + str(Z))

    Expected output:

    Z [[ 3.26295337 -1.23429987]]

    4.2 - 激活函数(相邻两层的激活实现)

    你要使用的两个激励函数:

    Exercise: 实现前向传播(LINEAR->ACTIVATION layer)。数学公式是:,激励函数“g”是 sigmod 或者 relu()。使用 linear_forward()  和 正确的 激励函数。

    //预先实现的 sigmod 和 relu 函数

    import numpy as np
    
    def sigmoid(Z):
        """n
        Implements the sigmoid activation in numpy
    
        Arguments:
        Z -- numpy array of any shape
    
        Returns:
        A -- output of sigmoid(z), same shape as Z
        cache -- returns Z as well, useful during backpropagation
        """
    
        A = 1/(1+np.exp(-Z))
        cache = Z
    
        return A, cache
    
    def relu(Z):
        """
        Implement the RELU function.
    
        Arguments:
        Z -- Output of the linear layer, of any shape
    
        Returns:
        A -- Post-activation parameter, of the same shape as Z
        cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
        """
    
        A = np.maximum(0,Z)
    
        assert(A.shape == Z.shape)
    
        cache = Z 
        return A, cache

    //linear_activation_forward()

    # GRADED FUNCTION: linear_activation_forward
    
    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache = linear_forward(A_prev, W, b)   # linear_cache:A_prev, W, b
            A, activation_cache = sigmoid(Z)                 # activation_cache:Z
            ### END CODE HERE ###
        
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
            ### END CODE HERE ###
        
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)
    
        return A, cache
    A_prev, W, b = linear_activation_forward_test_case()
    
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
    print("With sigmoid: A = " + str(A))
    
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
    print("With ReLU: A = " + str(A))

    Expected output:

    With sigmoid: A [[ 0.96890023 0.11013289]]
    With ReLU: A [[ 3.43896131 0. ]]

    4.3 - L-Layer Model (L层模型)

     

     [Linear -> Relu] x (L - 1) --> Linear--> Sigmod model

    Exercise: 实现以上 前向传播模型

    Instruction: AL:,AL有时候叫做:

    Tips:

    • 使用之前用的函数
    • 使用循环重复 【Linear --> Relu】(L-1)次
    • 不要忘记跟踪"cache"列表中的cache。添加 c 到 list。用 list.append(c).
    # GRADED FUNCTION: L_model_forward
    
    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2                  # number of layers in the neural network
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):
            A_prev = A 
            ### START CODE HERE ### (≈ 2 lines of code)
            A, cache = linear_activation_forward(A_prev, 
                                                         parameters["W" + str(l)], 
                                                         parameters["b" + str(l)], 
                                                         activation='relu')        # cache = (A W b, Z)
            caches.append(cache)
            ### END CODE HERE ###
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        ### START CODE HERE ### (≈ 2 lines of code)
        AL, cache = linear_activation_forward(A,
                                                  parameters["W" + str(L)],
                                                  parameters["b" + str(L)],
                                                  activation="sigmoid")
        caches.append(cache)
        ### END CODE HERE ###
        
        assert(AL.shape == (1,X.shape[1]))
                
        return AL, caches
    X, parameters = L_model_forward_test_case()
    AL, caches = L_model_forward(X, parameters)
    print("AL = " + str(AL))
    print("Length of caches list = " + str(len(caches)))

    AL = [[ 0.17007265 0.2524272 ]]

    Length of caches list = 2

    5 - Cost function(代价函数)

    Exercise: 计算代价函数:

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        ### START CODE HERE ### (≈ 1 lines of code)
        cost = - (1 / m) * np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y, np.log(1 - AL)))
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost
    Y, AL = compute_cost_test_case()
    
    print("cost = " + str(compute_cost(AL, Y)))

    Expected Output:

    cost 0.41493159961539694

    6 - Backward propagation module(反向传播模型)

    • 反向传播用于计算损失函数相对于参数的梯度

     

    Figure3:紫色部分:前向传播;红色部分:反向传播;

    建立反向传播3个步骤:

    • Linear backward
    • Linear--> Activation backward (activation 计算Relu 或者sigmod的导数) 
    • [Linear-->Relu] x (L-1) --> Linear --> Sigmod backward (整个模型)

    6.1 - Linear backward (反向传播线性部分)

    • 对 层,线性部分是:

    注:cache提供 tuple值 -- (A_prev, W, b)

     

    Exercise: 使用上面三个公式实现反向传播的线性部分: linear_backward().

    # GRADED FUNCTION: linear_backward
    
    def linear_backward(dZ, cache): 
        """
        Implement the linear portion of backward propagation for a single layer (layer l)
    
        Arguments:
        dZ -- Gradient of the cost with respect to the linear output (of current layer l)
        cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
    
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        A_prev, W, b = cache    
        m = A_prev.shape[1]
    
        ### START CODE HERE ### (≈ 3 lines of code)
        dW = (1 / m) * np.dot(dZ, A_prev.T)
        db = (1 / m ) * np.sum(dZ, axis=1, keepdims=True)
        dA_prev = np.dot(W.T, dZ)
        ### END CODE HERE ###
        
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (db.shape == b.shape)
        
        return dA_prev, dW, db
    # Set up some test inputs
    dZ, linear_cache = linear_backward_test_case()
    
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

    Expected Output:

    dA_prev [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]]
    dW [[-0.10076895 1.40685096 1.64992505]]
    db [[ 0.50629448]]

    6.2 - Linear-Activation backward

    • 求 dz;

    • 相邻两层的梯度实现,求(dA_prev, dW, db)

    使用: linear_backward 和 用于激励的反向传播 linear_activation_backward.

    为帮助你实现 linear_activation_backward, 我们提供两个反向函数:

    • sigmoid_backward: 实现反向传播的sigmod单元。你可以使用:
    dZ = sigmoid_backward(dA, activation_cache)  # activation_cache就是Z
    • relu_backward: 实现反向传播的relu单元。你可以使用:
    dZ = relu_backward(dA, activation_cache)

    如果g(.) 是激励函数,sigmod_backward和relu_backward用来计算 

    Exercise: 实现反向传播( for the LINEAR->ACTIVATION layer.)的求导部分

    //预先实现的sigmoid_backward和relu_backward

    def relu_backward(dA, cache):
        """
        Implement the backward propagation for a single RELU unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object. g'(z) = 1
    
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    def sigmoid_backward(dA, cache):   
        """
        Implement the backward propagation for a single SIGMOID unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
    
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)     # g'(z) = s * (1 - s)
    
        assert (dZ.shape == Z.shape)
    
        return dZ

     综合求 dz, dA_prev, dW, db

    # GRADED FUNCTION: linear_activation_backward
    
    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache    # A_prev W b, Z
        
        if activation == "relu":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ = relu_backward(dA, activation_cache)             # activation_cache: Z
            dA_prev, dW, db = linear_backward(dZ, linear_cache)  # linear_cache: A_prev, W, b
            ### END CODE HERE ###
            
        elif activation == "sigmoid":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
            ### END CODE HERE ###
        
        return dA_prev, dW, db
    dAL, linear_activation_cache = linear_activation_backward_test_case()
    
    dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "sigmoid")
    print ("sigmoid:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db) + "
    ")
    
    dA_prev, dW, db = linear_activation_backward(dAL, linear_activation_cache, activation = "relu")
    print ("relu:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

    Expected output with sigmoid:

    dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]]
    dW [[ 0.10266786 0.09778551 -0.01968084]]
    db [[-0.05729622]]
     

    Expected output with relu:

    dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]
    dW [[ 0.44513824 0.37371418 -0.10478989]]
    db [[-0.20837892]]

     

    6.3 - L-Model Backward(L层模型)

    在L_model_forward函数中每次迭代都存储了一个cache--(X, W, b, Z). 在 后向传播中,你将用到这些变量来计算 梯度。

    在L_model_backward函数中,将遍历所有隐藏层,从L层开始。每一步中,你将使用 l 层的cache值中进行反向传播。如图:

    初始化反向传播: 要通过这个网络进行反向传播,要知道输出是:。你的代码需要计算:

    使用下面公式:

    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL.  -(Y / AL - (1 - Y) / (1 - AL))

    推导如下: 

    前向传播:

    反向传播:

    你可以用这个 dAL 来保持进行后向传播。现在,你可以使用 dAL Linear-->Sigmod后向传播函数中(使用由L_model_forward函数产生的cache值)。

    然后,你不得不使用 一个循环来迭代每一层,使用Linear-->Relu后向传播函数

    存储每一个 dA_prev, dW, db在 grad字典中,用下列公式:$grads["dW"+str(l)] = dw^{[l])$

    Exercise: 实现后向传播 ([LINEAR->RELU] × (L-1) -> LINEAR -> SIGMOID model)

    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (there are (L-1) or them, indexes from 0 to L-2)
                    the cache of linear_activation_forward() with "sigmoid" (there is one, index L-1)
    
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    
        # Initializing the backpropagation
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
        current_cache = caches[L-1]
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid")
    
        for l in reversed(range(L-1)):
            # lth layer: (RELU -> LINEAR) gradients.
            current_cache = caches[l]
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu")
            grads["dA" + str(l)] = dA_prev_temp
            grads["dW" + str(l + 1)] = dW_temp
            grads["db" + str(l + 1)] = db_temp
    
        return grads
    AL, Y_assess, caches = L_model_backward_test_case()
    grads = L_model_backward(AL, Y_assess, caches)
    print ("dW1 = "+ str(grads["dW1"]))
    print ("db1 = "+ str(grads["db1"]))
    print ("dA1 = "+ str(grads["dA1"]))

    Expected Output

    dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
    db1 [[-0.22007063] [ 0. ] [-0.02835349]]
    dA1 [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]

    6.4 - Update Parameters(更新参数)

    在这个任务,使用梯度下降来更新参数:

    (α是学习率,在更新参数后,存储他们在参数字典中。)

    Exercise: 实现 update_parameters() 来更新参数。

    Instructions: 在每一个 ,使用梯度下降来更新参数

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        ### START CODE HERE ### (≈ 3 lines of code)
        for l in range(L):
            parameters["W" + str(l+1)] = parameters["W" + str(l + 1)] - grads["dW" + str(l + 1)] * learning_rate
            parameters["b" + str(l+1)] = parameters["b" + str(l + 1)] - grads["db" + str(l + 1)] * learning_rate  
        ### END CODE HERE ###
        return parameters
    parameters, grads = update_parameters_test_case()
    parameters = update_parameters(parameters, grads, 0.1)
    
    print ("W1 = "+ str(parameters["W1"]))
    print ("b1 = "+ str(parameters["b1"]))
    print ("W2 = "+ str(parameters["W2"]))
    print ("b2 = "+ str(parameters["b2"]))

    Expected Output:

    W1 [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]]
    b1 [[-0.04659241] [-1.28888275] [ 0.53405496]]
    W2 [[-0.55569196 0.0354055 1.32964895]]
    b2 [[-0.84610769]]

  • 相关阅读:
    理解scrollTop,scrollLeft,clientWidth,clientHeight,offsetWidth,offsetHeight
    jQuery插件开发全解析
    JavaScript世界的一等公民 函数
    js 判断键盘事件大全 兼容FireFox和IE(退格、制表、回车、空格、方向键、删除键等)
    使用SeaJS实现模块化JavaScript开发
    嵌套iframe下父子页面之间的同域与跨域通信
    PHP设计模式(一)
    获取Form多条选中记录
    AX Barcode
    AX Query分页
  • 原文地址:https://www.cnblogs.com/douzujun/p/10325980.html
Copyright © 2011-2022 走看看