思路
遇到这种利益冲突的最终利益最大化问题
考虑转化为最小割,使得损失的价值最小
相当于文科是S,理科是T,选出最小割就是确定损失代价最小的方案
然后就把S向每个点连一条cap=art[i][j]的边,每个点向T连一条cap=science[i][j]的边,再新建n*m个点表示同选文科的利益,然后S向每个新建点连一条cap=same_art[i][j]的边,然后再从新建点向每个点和它的相邻点向连一条cap=INF的边,然后同选立刻的收益同理新建点再向T连边,相邻点同理的向新建点连边
再跑出最小割即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
struct Edge{
int u,v,cap,flow;
};
const int MAXN = 40100;
const int INF = 0x3f3f3f3f;
vector<Edge> edges;
vector<int> G[MAXN];
void addedge(int u,int v,int cap){
edges.push_back((Edge){u,v,cap,0});
edges.push_back((Edge){v,u,0,0});
int cnt=edges.size();
G[u].push_back(cnt-2);
G[v].push_back(cnt-1);
}
int cur[MAXN],dep[MAXN],vis[MAXN],s,t;
int dfs(int x,int a){
if(x==t||a==0)
return a;
int f,flow=0;
for(int &i=cur[x];i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(dep[e.v]==dep[x]+1&&(f=dfs(e.v,min(e.cap-e.flow,a)))>0){
flow+=f;
e.flow+=f;
edges[G[x][i]^1].flow-=f;
a-=f;
if(!a)
break;
}
}
return flow;
}
queue<int> q;
bool bfs(void){
memset(vis,0,sizeof(vis));
dep[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<G[x].size();i++){
Edge &e = edges[G[x][i]];
if(e.cap>e.flow&&(!vis[e.v])){
vis[e.v]=true;
dep[e.v]=dep[x]+1;
q.push(e.v);
}
}
}
return vis[t];
}
int dinic(void){
int flow=0;
while(bfs()){
// printf("Not Re
");
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
int n,m,same_wen[110][110],same_li[110][110],wen[110][110],li[110][110],sum=0;
const int mx[] = {0,0,1,-1,0},my[] ={0,1,0,0,-1};
int id(int x,int y,int idx=0){
return (x-1)*m+y+idx*n*m;
}
int main(){
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&wen[i][j]);
sum+=wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&li[i][j]);
sum+=li[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_wen[i][j]);
sum+=same_wen[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&same_li[i][j]);
sum+=same_li[i][j];
}
// printf("Not Re
");
s=MAXN-2;//wen
t=MAXN-3;//li
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
addedge(s,id(i,j),wen[i][j]);//wen
addedge(id(i,j),t,li[i][j]);//li
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(s,id(i,j,1),same_wen[i][j]);
addedge(id(i,j,1),id(i,j),INF);
if(i>1)
addedge(id(i,j,1),id(i-1,j),INF);
if(j>1)
addedge(id(i,j,1),id(i,j-1),INF);
if(i<n)
addedge(id(i,j,1),id(i+1,j),INF);
if(j<m)
addedge(id(i,j,1),id(i,j+1),INF);
}
for(int i=1;i<=n;i++)//shang
for(int j=1;j<=m;j++){
addedge(id(i,j,2),t,same_li[i][j]);
addedge(id(i,j),id(i,j,2),INF);
if(i>1)
addedge(id(i-1,j),id(i,j,2),INF);
if(j>1)
addedge(id(i,j-1),id(i,j,2),INF);
if(i<n)
addedge(id(i+1,j),id(i,j,2),INF);
if(j<m)
addedge(id(i,j+1),id(i,j,2),INF);
}
// printf("Not Re
");
printf("%d
",sum-dinic());
return 0;
}