@
将 x 减到 0 的最小操作数 Minimum Operations to Reduce X to Zero
给定一个整数数组nums和一个整数x。每一次操作时,应当删除nums的最left和最right的元素,然后从x中减去该元素的值。
如果可以将x正好减到0,返回最小操作数;否则 返回-1
nums = [1,1,4,2,3], x = 5
2 right【2,3】
nums = [5,6,7,8,9], x = 4
-1 没有满足条件的数
nums = [3,2,20,1,1,3], x = 10
5 left【3,2】 right【1,1,3】
思路
将x减到0的最小操作数。也就是说可能会存在左边几个数+右边几个数==X,如果存在多个可能性,那么就选择最小的数据。
统计left presum,统计right presum,从左边开始遍历,在右边寻找是否存在x-presuml[i]的j下标,不存在就返回-1。
如果存在i,j,就记录到ans,如果发现到比ans更小的(i+j),就更新ans=i+j;
public int minOperations(int[] nums, int x) {
int[] presuml = new int[nums.length+1];
int[] presumr = new int[nums.length+1];
presuml[0] =0;
presumr[0] =0;
for (int i = 0; i < nums.length; i++) {
presuml[i+1] = presuml[i]+nums[i];//calc presum from left
}
for (int i = nums.length-1; i >=0 ; i--) {
presumr[nums.length-i] = presumr[nums.length-i-1] + nums[i];//calc presum from right
}
int ans = -1;
//travel from left presum ,then try to find a result equal (x-presuml[i]) from right presum
//if exist should return j
//(i+j) maybe the result but we should check i+j bigger than length
//if ans is bigger than (i+j),we shoule replace ans with (i+j)
for (int i = 0; i < presuml.length; i++) {
int j = binarysearch(presumr, x - presuml[i]);
if(j==-1){
continue;
}
if(i+j>nums.length){
continue;
}
if(ans==-1||ans>(i+j)){
ans = i+j;
}
}
return ans;
}
public int binarysearch(int[] arr,int x){
int head =0 ;
int tail = arr.length-1;
int mid = 0;
while (head<=tail){
mid = (head+tail)>>1;
if (arr[mid] == x) {
return mid;
}
else if (arr[mid]<x){
head = mid+1;
}
else{
tail = mid -1;
}
}
return -1;
}
Tag
binary search
prefix sum