zoukankan      html  css  js  c++  java
  • RDD之六:Action算子

    本质上在Actions算子中通过SparkContext执行提交作业的runJob操作,触发了RDD DAG的执行。 
    根据Action算子的输出空间将Action算子进行分类:无输出、 HDFS、 Scala集合和数据类型。

    无输出

    foreach

    对RDD中的每个元素都应用f函数操作,不返回RDD和Array,而是返回Uint。 

    图中,foreach算子通过用户自定义函数对每个数据项进行操作。 本例中自定义函数为println,控制台打印所有数据项。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Applies a function f to all elements of this RDD.  
    3.  */  
    4. def foreach(f: T => Unit) {  
    5.   val cleanF = sc.clean(f)  
    6.   sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))  
    7. }  

    HDFS

    (1)saveAsTextFile

    函数将数据输出,存储到HDFS的指定目录。将RDD中的每个元素映射转变为(Null,x.toString),然后再将其写入HDFS。 

    图中,左侧的方框代表RDD分区,右侧方框代表HDFS的Block。 通过函数将RDD的每个分区存储为HDFS中的一个Block。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Save this RDD as a text file, using string representations of elements.  
    3.  */  
    4. def saveAsTextFile(path: String) {  
    5.   // https://issues.apache.org/jira/browse/SPARK-2075  
    6.   //  
    7.   // NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit  
    8.   // Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`  
    9.   // in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an  
    10.   // Ordering for `NullWritable`. That's why the compiler will generate different anonymous  
    11.   // classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.  
    12.   //  
    13.   // Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate  
    14.   // same bytecodes for `saveAsTextFile`.  
    15.   val nullWritableClassTag = implicitly[ClassTag[NullWritable]]  
    16.   val textClassTag = implicitly[ClassTag[Text]]  
    17.   val r = this.mapPartitions { iter =>  
    18.     val text = new Text()  
    19.     iter.map { x =>  
    20.       text.set(x.toString)  
    21.       (NullWritable.get(), text)  
    22.     }  
    23.   }  
    24.   RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)  
    25.     .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)  
    26. }  
    27.   
    28. /**  
    29.  * Save this RDD as a compressed text file, using string representations of elements.  
    30.  */  
    31. def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]) {  
    32.   // https://issues.apache.org/jira/browse/SPARK-2075  
    33.   val nullWritableClassTag = implicitly[ClassTag[NullWritable]]  
    34.   val textClassTag = implicitly[ClassTag[Text]]  
    35.   val r = this.mapPartitions { iter =>  
    36.     val text = new Text()  
    37.     iter.map { x =>  
    38.       text.set(x.toString)  
    39.       (NullWritable.get(), text)  
    40.     }  
    41.   }  
    42.   RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)  
    43.     .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec)  
    44. }  

    (2)saveAsObjectFile

    saveAsObjectFile将分区中的每10个元素组成一个Array,然后将这个Array序列化,映射为(Null,BytesWritable(Y))的元素,写入HDFS为SequenceFile的格式。

    图中,左侧方框代表RDD分区,右侧方框代表HDFS的Block。 通过函数将RDD的每个分区存储为HDFS上的一个Block。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Save this RDD as a SequenceFile of serialized objects.  
    3.  */  
    4. def saveAsObjectFile(path: String) {  
    5.   this.mapPartitions(iter => iter.grouped(10).map(_.toArray))  
    6.     .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x))))  
    7.     .saveAsSequenceFile(path)  
    8. }  

    Scala集合和数据类型

    (1)collect

    collect相当于toArray,toArray已经过时不推荐使用,collect将分布式的RDD返回为一个单机的scala Array数组。 在这个数组上运用scala的函数式操作。

    图中,左侧方框代表RDD分区,右侧方框代表单机内存中的数组。通过函数操作,将结果返回到Driver程序所在的节点,以数组形式存储。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Return an array that contains all of the elements in this RDD.  
    3.  */  
    4. def collect(): Array[T] = {  
    5.   val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)  
    6.   Array.concat(results: _*)  
    7. }  

    (2)collectAsMap

    collectAsMap对(K,V)型的RDD数据返回一个单机HashMap。对于重复K的RDD元素,后面的元素覆盖前面的元素。 

    图中,左侧方框代表RDD分区,右侧方框代表单机数组。数据通过collectAsMap函数返回给Driver程序计算结果,结果以HashMap形式存储。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Return the key-value pairs in this RDD to the master as a Map.  
    3.  *  
    4.  * Warning: this doesn't return a multimap (so if you have multiple values to the same key, only  
    5.  *          one value per key is preserved in the map returned)  
    6.  */  
    7. def collectAsMap(): Map[K, V] = {  
    8.   val data = self.collect()  
    9.   val map = new mutable.HashMap[K, V]  
    10.   map.sizeHint(data.length)  
    11.   data.foreach { pair => map.put(pair._1, pair._2) }  
    12.   map  
    13. }  

    (3)reduceByKeyLocally

    实现的是先reduce再collectAsMap的功能,先对RDD的整体进行reduce操作,然后再收集所有结果返回为一个HashMap。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Merge the values for each key using an associative reduce function, but return the results  
    3.  * immediately to the master as a Map. This will also perform the merging locally on each mapper  
    4.  * before sending results to a reducer, similarly to a "combiner" in MapReduce.  
    5.  */  
    6. def reduceByKeyLocally(func: (V, V) => V): Map[K, V] = {  
    7.   
    8.   if (keyClass.isArray) {  
    9.     throw new SparkException("reduceByKeyLocally() does not support array keys")  
    10.   }  
    11.   
    12.   val reducePartition = (iter: Iterator[(K, V)]) => {  
    13.     val map = new JHashMap[K, V]  
    14.     iter.foreach { pair =>  
    15.       val old = map.get(pair._1)  
    16.       map.put(pair._1, if (old == null) pair._2 else func(old, pair._2))  
    17.     }  
    18.     Iterator(map)  
    19.   } : Iterator[JHashMap[K, V]]  
    20.   
    21.   val mergeMaps = (m1: JHashMap[K, V], m2: JHashMap[K, V]) => {  
    22.     m2.foreach { pair =>  
    23.       val old = m1.get(pair._1)  
    24.       m1.put(pair._1, if (old == null) pair._2 else func(old, pair._2))  
    25.     }  
    26.     m1  
    27.   } : JHashMap[K, V]  
    28.   
    29.   self.mapPartitions(reducePartition).reduce(mergeMaps)  
    30. }  

    (4)lookup

    Lookup函数对(Key,Value)型的RDD操作,返回指定Key对应的元素形成的Seq。这个函数处理优化的部分在于,如果这个RDD包含分区器,则只会对应处理K所在的分区,然后返回由(K,V)形成的Seq。如果RDD不包含分区器,则需要对全RDD元素进行暴力扫描处理,搜索指定K对应的元素。

    图中,左侧方框代表RDD分区,右侧方框代表Seq,最后结果返回到Driver所在节点的应用中。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Return the list of values in the RDD for key `key`. This operation is done efficiently if the  
    3.  * RDD has a known partitioner by only searching the partition that the key maps to.  
    4.  */  
    5. def lookup(key: K): Seq[V] = {  
    6.   self.partitioner match {  
    7.     case Some(p) =>  
    8.       val index = p.getPartition(key)  
    9.       val process = (it: Iterator[(K, V)]) => {  
    10.         val buf = new ArrayBuffer[V]  
    11.         for (pair <- it if pair._1 == key) {  
    12.           buf += pair._2  
    13.         }  
    14.         buf  
    15.       } : Seq[V]  
    16.       val res = self.context.runJob(self, process, Array(index), false)  
    17.       res(0)  
    18.     case None =>  
    19.       self.filter(_._1 == key).map(_._2).collect()  
    20.   }  
    21. }  

    (5)count

    count返回整个RDD的元素个数。 

    图中,返回数据的个数为5。一个方块代表一个RDD分区。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Return the number of elements in the RDD.  
    3.  */  
    4. def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum  

    (6)top

    top可返回最大的k个元素。 
    相近函数说明:

    • top返回最大的k个元素。
    • take返回最小的k个元素。
    • takeOrdered返回最小的k个元素, 并且在返回的数组中保持元素的顺序。
    • first相当于top( 1) 返回整个RDD中的前k个元素, 可以定义排序的方式Ordering[T]。返回的是一个含前k个元素的数组。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Returns the top k (largest) elements from this RDD as defined by the specified  
    3.  * implicit Ordering[T]. This does the opposite of [[takeOrdered]]. For example:  
    4.  * {{{  
    5.  *   sc.parallelize(Seq(10, 4, 2, 12, 3)).top(1)  
    6.  *   // returns Array(12)  
    7.  *  
    8.  *   sc.parallelize(Seq(2, 3, 4, 5, 6)).top(2)  
    9.  *   // returns Array(6, 5)  
    10.  * }}}  
    11.  *  
    12.  * @param num k, the number of top elements to return  
    13.  * @param ord the implicit ordering for T  
    14.  * @return an array of top elements  
    15.  */  
    16. def top(num: Int)(implicit ord: Ordering[T]): Array[T] = takeOrdered(num)(ord.reverse)  

    (7)reduce

    reduce函数相当于对RDD中的元素进行reduceLeft函数的操作。 
    reduceLeft先对两个元素

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Reduces the elements of this RDD using the specified commutative and  
    3.  * associative binary operator.  
    4.  */  
    5. def reduce(f: (T, T) => T): T = {  
    6.   val cleanF = sc.clean(f)  
    7.   val reducePartition: Iterator[T] => Option[T] = iter => {  
    8.     if (iter.hasNext) {  
    9.       Some(iter.reduceLeft(cleanF))  
    10.     } else {  
    11.       None  
    12.     }  
    13.   }  
    14.   var jobResult: Option[T] = None  
    15.   val mergeResult = (index: Int, taskResult: Option[T]) => {  
    16.     if (taskResult.isDefined) {  
    17.       jobResult = jobResult match {  
    18.         case Some(value) => Some(f(value, taskResult.get))  
    19.         case None => taskResult  
    20.       }  
    21.     }  
    22.   }  
    23.   sc.runJob(this, reducePartition, mergeResult)  
    24.   // Get the final result out of our Option, or throw an exception if the RDD was empty  
    25.   jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))  
    26. }  

    (8)fold

    fold和reduce的原理相同,但是与reduce不同,相当于每个reduce时,迭代器取的第一个元素是zeroValue。 

    图中,通过用户自定义函数进行fold运算,图中的一个方框代表一个RDD分区。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Aggregate the elements of each partition, and then the results for all the partitions, using a  
    3.  * given associative function and a neutral "zero value". The function op(t1, t2) is allowed to  
    4.  * modify t1 and return it as its result value to avoid object allocation; however, it should not  
    5.  * modify t2.  
    6.  */  
    7. def fold(zeroValue: T)(op: (T, T) => T): T = {  
    8.   // Clone the zero value since we will also be serializing it as part of tasks  
    9.   var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())  
    10.   val cleanOp = sc.clean(op)  
    11.   val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)  
    12.   val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult)  
    13.   sc.runJob(this, foldPartition, mergeResult)  
    14.   jobResult  
    15. }  

    (9)aggregate

    aggregate先对每个分区的所有元素进行aggregate操作,再对分区的结果进行fold操作。 
    aggreagate与fold和reduce的不同之处在于,aggregate相当于采用归并的方式进行数据聚集,这种聚集是并行化的。 而在fold和reduce函数的运算过程中,每个分区中需要进行串行处理,每个分区串行计算完结果,结果再按之前的方式进行聚集,并返回最终聚集结果。

    图中,通过用户自定义函数对RDD 进行aggregate的聚集操作,图中的每个方框代表一个RDD分区。

    源码:

    [plain] view plain copy
     
     在CODE上查看代码片派生到我的代码片
    1. /**  
    2.  * Aggregate the elements of each partition, and then the results for all the partitions, using  
    3.  * given combine functions and a neutral "zero value". This function can return a different result  
    4.  * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U  
    5.  * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are  
    6.  * allowed to modify and return their first argument instead of creating a new U to avoid memory  
    7.  * allocation.  
    8.  */  
    9. def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = {  
    10.   // Clone the zero value since we will also be serializing it as part of tasks  
    11.   var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())  
    12.   val cleanSeqOp = sc.clean(seqOp)  
    13.   val cleanCombOp = sc.clean(combOp)  
    14.   val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)  
    15.   val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)  
    16.   sc.runJob(this, aggregatePartition, mergeResult)  
    17.   jobResult  
    18.  }  

    原文链接:http://blog.csdn.net/jasonding1354

  • 相关阅读:
    各大IT公司的起名缘由
    [转]深入探究Windows系统中INF的秘密
    终于部分解决了.NET Drawing.Printing中自定义PaperSize的问题
    通过预处理器指令调整连接的数据库
    LQ1600KIII针式打印机的卷纸控制
    WM有约II(四):你明天有空吗?
    WM有约II(三):整合Outlook Mobile的约会信息
    WM有约II(五):区别对待不同的手机号码
    WM有约II(一):你在干嘛?
    WM有约II(二):持续改进
  • 原文地址:https://www.cnblogs.com/duanxz/p/6327380.html
Copyright © 2011-2022 走看看