zoukankan      html  css  js  c++  java
  • HDU 3666 THE MATRIX PROBLEM (差分约束)

    题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内。

    析:再把题意说明白一点就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立。

    首先把cij先除到两边去,就变成了l'<=ai/bj<=u',由于差分约束要是的减,怎么变成减法呢?取对数呗,两边取对数得到log(l')<=log(ai)-log(bj)<=log(u')。

    然后把ai, bj看成是两个点,那两个是权值,就可以差分约束了,但是。。这个题太坑了,会TLE,必须要判断好结束条件,就是访问次数超过sqrt(m+n),

    就结束,如果不开根号,就会一直TLE。。。。有没有天理了。。。。

    析:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <stack>
    using namespace std ;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-10;
    const int maxn = 800 + 5;
    const int mod = 1e9 + 7;
    const char *mark = "+-*";
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    int n, m;
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    int head[maxn], to[maxn*maxn/2], Next[maxn*maxn/2], cnt;
    double w[maxn*maxn/2], l, u, d[maxn];
    
    void addedge(int u, int v, double c){
        to[cnt] = v;
        w[cnt] = c;
        Next[cnt] = head[u];
        head[u] = cnt++;
    }
    int vis[maxn], num[maxn];
    
    bool spfa(){
        memset(vis, 0, sizeof(vis));
        memset(num, 0, sizeof(num));
        fill(d, d+n+m+1, inf);
        queue<int> q;
        vis[0] = 1;  d[0] = 0;  num[0] = 1;
        q.push(0);
        int limit = sqrt(m+n+0.5);//不开根号,想AC?都到没有。
    
        while(!q.empty()){
            int u = q.front();  q.pop();
            vis[u] = 0;
            for(int i = head[u]; i != -1; i = Next[i]){
                int v = to[i];
                double c = w[i];
                if(!vis[v] && d[v] > d[u] + c){
                    if(++num[v] > limit)  return false;
                    d[v] = d[u] + c;
                    q.push(v);
                    vis[v] = 1;
                }
            }
        }
        return true;
    }
    
    int main(){
        while(scanf("%d %d %lf %lf", &n, &m, &l, &u) == 4){
            memset(head, -1, sizeof(head));
            cnt = 0;
            double ll = log(l);
            double uu = log(u);
            for(int i = 0; i < n; ++i){
                for(int j = 0; j < m; ++j){
                    double x;
                    scanf("%lf", &x);
                    x = log(x);
                    addedge(i, j+n, x-ll);
                    addedge(j+n, i, uu-x);
                }
            }
            if(spfa())  puts("YES");
            else puts("NO");
        }
        return 0;
    }
    

      

  • 相关阅读:
    一个关于Delphi XML处理单元的BUG
    弹出一个非阻塞对话框
    更新Delphi中SVN客户端版本的方法
    程序只允许运行一个+重复运行程序提前
    Reverse Words in a String
    How to define Servlet filter order of execution using annotations
    Understanding and Using Servlet Filters
    Observer Pattern
    javascript 比较
    SOAP vs REST
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5783680.html
Copyright © 2011-2022 走看看