zoukankan      html  css  js  c++  java
  • 数据结构 通畅工程 (最小生成树)

    Description

    在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。

    Input

    有多组输入数据。每组第一行输入三个整数n、m、c(1<=n,m,c<=100000),分别代表城市数量,可建道路数量和单位长度道路修建费用。接下来m行每行三个整数u、v(1<=u,v<=n)、d(1<=d<=100000)。代表可建道路的起点城市、终点城市和长度。

    Output

    每组数据输出一行,输出数据组数和使所有城市连通的最小费用,无法全部连通输出-1,格式见样例。

    Sample Input

    1 2 1 100 1 2 100

    Sample Output

    Case #1: 10000

    HINT

    考察知识点:最小生成树。


    Append Code

    析:没什么可说的,最小生成树,水题。

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define debug puts("+++++")
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
     
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const LL mod = 1e9 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    inline int gcd(int a, int b){  return b == 0 ? a : gcd(b, a%b); }
    inline int lcm(int a, int b){  return a * b / gcd(a, b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Node{
        int u, v;
        LL val;
        bool operator < (const Node &p) const{
            return val < p.val;
        }
    };
    Node a[maxn];
    int p[maxn];
    int Find(int x){  return x == p[x] ? x : p[x] = Find(p[x]); }
    LL k;
     
    LL Kruskal(){
        int cnt = 0;
        LL ans = 0;
        for(int i = 0; i < m && cnt < n-1; ++i){
            int x = Find(a[i].u);
            int y = Find(a[i].v);
            if(x != y){
                p[y] = x;
                ans += a[i].val;
                ++cnt;
            }
        }
        ans *= k;
        return cnt == n-1 ? ans : -1;
    }
     
    int main(){
        int T;  cin >> T;
        for(int kase = 1; kase <= T; ++kase){
            scanf("%d %d %lld", &n, &m, &k);
            for(int i = 0; i <= n; ++i)  p[i] = i;
            for(int i = 0; i < m; ++i)
                scanf("%d %d %lld", &a[i].u, &a[i].v, &a[i].val);
            sort(a, a+m);
            printf("Case #%d: %lld
    ", kase, Kruskal());
        }
        return 0;
    }
    
  • 相关阅读:
    JS深度判断两个数组对象字段相同
    box-shadow inset
    swiper实现滑动到某页锁住不让滑动
    vuex上手文章参考
    js基础补漏
    react学习文章
    C# .Net String字符串效率提高-字符串拼接
    JS,Jquery获取各种屏幕的宽度和高度
    highcharts的dataLabels如何去处阴影
    .net C# 抽奖,中奖
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5990827.html
Copyright © 2011-2022 走看看