zoukankan      html  css  js  c++  java
  • NEFU 628 Garden visiting (数论)

                Garden visiting

        Problem:628  Time Limit:1000ms  Memory Limit:65536K

    Description

    There is a very big garden at Raven’s residence. We regard the garden as an n*m rectangle. Raven’s house is at the top left corner, and the exit of the garden is at the bottom right. He can choose to take one step to only one direction (up, down, left or right) each time. Raven wants to go out of the garden as quickly as possible, so he wonders how many routes he could choose. 
    Raven knows there are many possible routes, so he only wants to know the number, which is the result that the total number of possible routes modes a given value p. He knows it is a simple question, so he hopes you may help him to solve it. 
    

    Input

    The first line of the input contains an integer T, which indicates the number of test cases.
    Then it is followed by three positive integers n, m and p (1 <= n, m, p <= 10^5), showing the length and width of the garden and p to be the mod of the result. 
    

    Output

    For each case, output one number to show the result (the sum modes p).

    Sample Input

    3
    2 2 5
    2 6 16
    6 6 24
    

    Sample Output

    2
    6
    12
    

    Hint

    Sample 1: There are 2 routes in total. 
    Sample 2: There are 6 routes in total.
    Sample 3: There are 252 routes in total.
    
    

    题意:给定一个n*m的矩阵,让你求从左上角走到右下角有多少方法。

    析:很明显一个组合问题,C(n+m-2, m-1),这就是答案,我们只要计算这个就好,所以暴力去分解分子和分母,然后再乘起来。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    //#include <unordered_map>
    //#include <tr1/unordered_map>
    //#define freopenr freopen("in.txt", "r", stdin)
    //#define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    //const double inf = 0x3f3f3f3f3f3f;
    //const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 10005;
    //const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    vector<int> prime;
    bool a[200050];
    
    void init(){
        int m = sqrt(200050+0.5);
        memset(a, false, sizeof a);
        for(int i = 2; i <= m; ++i)  if(!a[i])
            for(int j = i*i; j < 200050; j += i)  a[j] = true;
        for(int i = 2; i < 200050; ++i)  if(!a[i])  prime.push_back(i);
    }
    int p;
    
    LL quick_pow(LL a, int n){
        LL ans = 1;
        while(n){
            if(n & 1)  ans = ans * a % p;
            a = a * a % p;
            n >>= 1;
        }
        return ans;
    }
    
    int cal(int x, int n){
        int ans = 0;
        while(n){
            ans += n / x;
            n /= x;
        }
        return ans;
    }
    
    LL solve(int n, int m){
        LL ans = 1;
        for(int i = 0; i < prime.size() && prime[i] <= n; ++i){
            int x = cal(prime[i], n);
            int y = cal(prime[i], n-m);
            int z = cal(prime[i], m);
            x -= y + z;
            ans = ans * quick_pow((LL)prime[i], x) % p;
        }
        return ans;
    }
    
    int main(){
        init();
        int T;  cin >> T;
        while(T--){
            scanf("%d %d %d", &n, &m, &p);
            n += m-2;
            --m;
            printf("%lld
    ", solve(n, m));
        }
        return 0;
    }
    
  • 相关阅读:
    canvas 平移&缩放
    html + css + jquery实现简单的进度条实例
    jQuery Layer mobile 弹出层
    jQuery-全屏滚动插件【fullPage.js】API 使用方法总结
    Hive:select count(distinct)优化以及hive.groupby.skewindata
    Spark Application、Driver、Job、stage、task
    Spark 参数说明
    Xgboost小结与调参
    梯度下降算法过程详细解读
    机器学习杂记
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6034434.html
Copyright © 2011-2022 走看看