zoukankan      html  css  js  c++  java
  • NEFU 628 Garden visiting (数论)

                Garden visiting

        Problem:628  Time Limit:1000ms  Memory Limit:65536K

    Description

    There is a very big garden at Raven’s residence. We regard the garden as an n*m rectangle. Raven’s house is at the top left corner, and the exit of the garden is at the bottom right. He can choose to take one step to only one direction (up, down, left or right) each time. Raven wants to go out of the garden as quickly as possible, so he wonders how many routes he could choose. 
    Raven knows there are many possible routes, so he only wants to know the number, which is the result that the total number of possible routes modes a given value p. He knows it is a simple question, so he hopes you may help him to solve it. 
    

    Input

    The first line of the input contains an integer T, which indicates the number of test cases.
    Then it is followed by three positive integers n, m and p (1 <= n, m, p <= 10^5), showing the length and width of the garden and p to be the mod of the result. 
    

    Output

    For each case, output one number to show the result (the sum modes p).

    Sample Input

    3
    2 2 5
    2 6 16
    6 6 24
    

    Sample Output

    2
    6
    12
    

    Hint

    Sample 1: There are 2 routes in total. 
    Sample 2: There are 6 routes in total.
    Sample 3: There are 252 routes in total.
    
    

    题意:给定一个n*m的矩阵,让你求从左上角走到右下角有多少方法。

    析:很明显一个组合问题,C(n+m-2, m-1),这就是答案,我们只要计算这个就好,所以暴力去分解分子和分母,然后再乘起来。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    //#include <unordered_map>
    //#include <tr1/unordered_map>
    //#define freopenr freopen("in.txt", "r", stdin)
    //#define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    //const double inf = 0x3f3f3f3f3f3f;
    //const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 10005;
    //const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    vector<int> prime;
    bool a[200050];
    
    void init(){
        int m = sqrt(200050+0.5);
        memset(a, false, sizeof a);
        for(int i = 2; i <= m; ++i)  if(!a[i])
            for(int j = i*i; j < 200050; j += i)  a[j] = true;
        for(int i = 2; i < 200050; ++i)  if(!a[i])  prime.push_back(i);
    }
    int p;
    
    LL quick_pow(LL a, int n){
        LL ans = 1;
        while(n){
            if(n & 1)  ans = ans * a % p;
            a = a * a % p;
            n >>= 1;
        }
        return ans;
    }
    
    int cal(int x, int n){
        int ans = 0;
        while(n){
            ans += n / x;
            n /= x;
        }
        return ans;
    }
    
    LL solve(int n, int m){
        LL ans = 1;
        for(int i = 0; i < prime.size() && prime[i] <= n; ++i){
            int x = cal(prime[i], n);
            int y = cal(prime[i], n-m);
            int z = cal(prime[i], m);
            x -= y + z;
            ans = ans * quick_pow((LL)prime[i], x) % p;
        }
        return ans;
    }
    
    int main(){
        init();
        int T;  cin >> T;
        while(T--){
            scanf("%d %d %d", &n, &m, &p);
            n += m-2;
            --m;
            printf("%lld
    ", solve(n, m));
        }
        return 0;
    }
    
  • 相关阅读:
    两小时后执行打开浏览器的操作
    Markdown语法
    Python机器学习2.2
    身份证姓名与身份证号校验
    根据银行卡号获取开户行
    生成微信小程序二维码
    .net 生成二维码
    微信支付API V3(.Net Core)
    .net 生成项目xml描述文件
    汉字排序问题
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6034434.html
Copyright © 2011-2022 走看看