题意:给定一个数字,让你构造成一些表达式,最后结果是该数字的概率要大于50%。
析:我们可以把一个数分解是2的多少次幂,然后加起来就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 500 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } map<int,char> ID; int f[20]; void init(){ f[1] = 1; for(int i = 2; i <= 15; ++i) f[i] = 2 * f[i-1]; ID[1] = 'a'; ID[2] = 'b'; ID[4] = 'c'; ID[8] = 'd'; ID[16] = 'e'; ID[32] = 'f'; ID[64] = 'g'; ID[128] = 'h'; printf("%c = ? max ? ", 9 + 'a'); for(int i = 10; i < 26; ++i) printf("%c = (%c max %c) ", i+'a', i-1+'a', i-1+'a'); printf("a = (z max z) / z "); for(int i = 2; i <= 128; i *= 2) printf("%c = %c + %c ",ID[i], ID[i>>1],ID[i>>1]); } int main(){ freopen("java2016.in","r",stdin); freopen("java2016.out","w",stdout); while(scanf("%d", &n) == 1){ if(n == 0){ printf("? /?/ ? "); continue; } init(); bool flag = false; for(int i = 8; i >= 1; --i){ if(n >= f[i]){ if(flag) printf(" + "); flag = true; printf("%c", ID[f[i]]); n -= f[i]; } } printf(" ",' '); } return 0; }