题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度。
析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp[i] 表示从 i 结点到完全匹配期望长度,所以很容易得到状态转移方程 dp[i] = ∑dp[j] / n + 1,然后用高斯消元即可,要注意,要用全整数的高斯消元。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
//#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 150000 + 10;
const int maxm = 3e5 + 10;
const int mod = 10007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
char s[20];
int f[maxn];
LL A[20][20];
void getFail(int n){
f[0] = f[1] = 0;
for(int i = 1; i < n; ++i){
int j = f[i];
while(j && s[i] != s[j]) j = f[j];
f[i+1] = s[i] == s[j] ? j+1 : 0;
}
}
void Gauess(int n){
for(int i = 0; i < n; ++i){
int r = i;
while(r < n && !A[r][i]) ++r;
if(r != i) for(int j = 0; j <= n; ++j) swap(A[r][j], A[i][j]);
for(int k = i+1; k < n; ++k) if(A[k][i]){
LL f = A[k][i];
for(int j = i; j <= n; ++j) A[k][j] = A[k][j] * A[i][i] - f * A[i][j];
}
}
for(int i = n-1; i >= 0; --i){
for(int j = i+1; j < n; ++j)
A[i][n] -= A[j][n] * A[i][j];
A[i][n] /= A[i][i];
}
}
int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d %s", &n, s);
m = strlen(s);
getFail(m);
ms(A, 0);
for(int i = 0; i < m; ++i){
A[i][i] += n;
A[i][m+1] += n;
for(int k = 0; k < n; ++k){
int j = i;
while(j && s[j] != 'A' + k) j = f[j];
if(s[j] == 'A' + k) ++j;
--A[i][j];
}
}
A[m][m] = 1;
Gauess(m + 1);
printf("Case %d:
", kase);
printf("%lld
", A[0][m+1]);
if(kase != T) puts("");
}
return 0;
}