zoukankan      html  css  js  c++  java
  • HDU 4746 Mophues (莫比乌斯反演)

    题意:给定n,m,p,问1~n,和1~m中,有多少对数满足F(gcd(i, j)) <= p,F(x) 表示 x 的质因数的个数。

    析:首先要能够判断出来,如果p>=20,那么答案就是n * m,因为质因子再多,就超了5e5了,这样的话,我们就好做多了,可以用莫比乌斯反演里德优化

    有了这个式子,其中F我们可以预处理出来,线性筛即可,再预处理前缀和就好,因为P<20,所以可以直接存储到数组就好了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 5e5 + 5;
    const int maxm = 2e4 + 10;
    const LL mod = 20101009;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int sum[maxn][20];
    int mu[maxn];
    bool vis[maxn];
    int prime[maxn], tot;
    int f[maxn];
    
    void Moblus(){
      mu[1] = 1;
      for(int i = 2; i < maxn; ++i){
        if(!vis[i])  prime[tot++] = i, mu[i] = -1, f[i] = 1;
        for(int j = 0; j < tot; ++j){
          int t = i * prime[j];
          if(t >= maxn)  break;
          vis[t] = 1;
          f[t] = f[i] + 1;
          if(i % prime[j] == 0)  break;
          mu[t] = -mu[i];
        }
      }
      for(int i = 1; i < maxn; ++i){
        int cnt = 1;
        for(int j = i; j < maxn; ++cnt, j += i)
          sum[j][f[i]] += mu[cnt];
      }
    
      FOR(i, 1, maxn)  FOR(j, 1, 20)
        sum[i][j] += sum[i][j-1];
      FOR(i, 1, maxn)  FOR(j, 0, 20)
        sum[i][j] += sum[i-1][j];
    }
    
    LL solve(int n, int m, int p){
      if(n > m)  swap(n, m);
      LL ans = 0;
      for(int i = 1, det; i <= n; i = det + 1){
        det = min(n/(n/i), m/(m/i));
        ans += (LL)(sum[det][p]-sum[i-1][p]) * (n/i) * (m/i);
      }
      return ans;
    }
    
    int main(){
      Moblus();
      int T;  cin >> T;
      while(T--){
        int p;
        scanf("%d %d %d", &n, &m, &p);
        if(p >= 20)  printf("%lld
    ", (LL)n * m);
        else printf("%lld
    ", solve(n, m, p));
      }
      return 0;
    }
    

      

  • 相关阅读:
    Android UI 之实现多级列表TreeView
    python小游戏实现代码
    【iOS知识学习】_UITableView简介
    根据指定电话号码得到通讯录上的姓名
    【转载】公钥、私钥、数字签名等知识
    常见的哈希Hash算法 & MD5 & 对称非对称加密 & 海明码
    Mac电脑解压文件unrar用密码问题解决
    一道题目- Find the smallest range that includes at least one number from each of the k lists
    求逆序对数总结 & 归并排序
    【转载】非常棒的算法面试类资源汇总
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8404319.html
Copyright © 2011-2022 走看看