zoukankan      html  css  js  c++  java
  • HDU 6397 Character Encoding (组合数学 + 容斥)

    题意:

    析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式。

    其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x2 + x3 +... xm = k,有多少非零解,隔板法很容易得到答案 C(k+m-1, m-1),但是有限制怎么办,使用容斥,考虑有一个变量超过 n-1,两个变量超过 n-1,等等,根据集合论,很容易知道偶加,奇减。。。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    // #define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
     
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 200000 + 10;
    const int maxm = 1e6 + 10;
    const LL mod = 998244353LL;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    LL fact[maxn], inv[maxn];
    
    LL fast_pow(LL a, int n){
      LL res = 1;
      while(n){
        if(n&1)  res = res * a % mod;
        n >>= 1;
        a = a * a % mod;
      }
      return res;
    }
    
    void init(){
      fact[0] = fact[1] = 1;
      for(int i = 2; i < maxn; ++i)  fact[i] = fact[i-1] * i % mod;
      inv[maxn-1] = fast_pow(fact[maxn-1], mod - 2);
      for(int i = maxn-2; i >= 0; --i)  inv[i] = inv[i+1] * (i+1) % mod;
    }
    
    inline LL C(int n, int m){ 
      if(n < m)  return 0LL;
      return fact[n] * inv[m] % mod * inv[n-m] % mod; 
    }
    
    inline LL G(int x, int k){
      return C(m, x) * C(k - x * n + m - 1, m - 1) % mod;
    }
    
    int main(){
      init();
      int T, k;  cin >> T;
      while(T--){
        scanf("%d %d %d", &n, &m, &k);
        if(n > k){ printf("%I64d
    ", C(m+k-1, m-1));  continue; }
        LL ans = 0;
        for(int i = 0; i <= (k + m - 1) / n; ++i)
          ans = (ans + (i&1? -G(i, k) : G(i, k))) % mod;
        printf("%I64d
    ", (ans%mod+mod)%mod);
      }
      return 0;
    }
    

      

  • 相关阅读:
    第三方插件处理 json数据的易错点
    C# 生成缩略图 方法
    javascript 数组的数据删除 splice() 的问题
    System.InvalidOperationException: 未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序。
    C#单的二维码生成
    “System.NullReferenceException”类型的异常在 App_Web_j2s3gau3.dll 中发生,但未在用户代码中进行处理的Bug解决方案
    C#实现简单的邮件发送功能
    Python配置管理的几种方式
    Airflow 入门教程&示例
    pandas 使用 df.product 条件筛选报错Keyerror:False
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/9511312.html
Copyright © 2011-2022 走看看